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Abstract

In safety-critical applications a probabilistic model is usually required to be cali-
brated, i.e., to capture the uncertainty of its predictions accurately. In multi-class
classification, calibration of the most confident predictions only is often not suffi-
cient. We propose and study calibration measures for multi-class classification that
generalize existing measures such as the expected calibration error, the maximum
calibration error, and the maximum mean calibration error. We propose and evalu-
ate empirically different consistent and unbiased estimators for a specific class of
measures based on matrix-valued kernels. Importantly, these estimators can be in-
terpreted as test statistics associated with well-defined bounds and approximations
of the p-value under the null hypothesis that the model is calibrated, significantly
improving the interpretability of calibration measures, which otherwise lack any
meaningful unit or scale.

1 Introduction

Consider the problem of analyzing microscopic images of tissue samples and reporting a tumour grade,
i.e., a score that indicates whether cancer cells are well-differentiated or not, affecting both prognosis
and treatment of patients. Since for some pathological images not even experienced pathologists
might all agree on one classification, this task contains an inherent component of uncertainty. This
type of uncertainty that can not be removed by increasing the size of the training data set is typically
called aleatoric uncertainty (Kiureghian and Ditlevsen, 2009). Unfortunately, even if the ideal model
is among the class of models we consider, with a finite training data set we will never obtain the
ideal model but we can only hope to learn a model that is, in some sense, close to it. Worse still, our
model might not even be close to the ideal model if the model class is too restrictive or the number of
training data is small—which is not unlikely given the fact that annotating pathological images is
expensive. Thus ideally our model should be able to express not only aleatoric uncertainty but also
the uncertainty about the model itself. In contrast to aleatoric uncertainty this so-called epistemic
uncertainty can be reduced by additional training data.

Dealing with these different types of uncertainty is one of the major problems in machine learning.
The application of our model in clinical practice demands “meaningful” uncertainties to avoid doing
harm to patients. Being too certain about high tumour grades might cause harm due to unneeded
aggressive therapies and overly pessimistic prognoses, whereas being too certain about low tumour
grades might result in insufficient therapies. “Proper” uncertainty estimates are also crucial if the
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model is supervised by a pathologist that takes over if the uncertainty reported by the model is too
high. False but highly certain gradings might incorrectly keep the pathologist out of the loop, and on
the other hand too uncertain gradings might demand unneeded and costly human intervention.

Probability theory provides a solid framework for dealing with uncertainties. Instead of assigning
exactly one grade to each pathological image, so-called probabilistic models report subjective
probabilities, sometimes also called confidence scores, of the tumour grades for each image. The
model can be evaluated by comparing these subjective probabilities to the ground truth.

One desired property of such a probabilistic model is sharpness (or high accuracy), i.e., if possible,
the model should assign the highest probability to the true tumour grade (which maybe can not be
inferred from the image at hand but only by other means such as an additional immunohistochemical
staining). However, to be able to trust the predictions the probabilities should be calibrated (or
reliable) as well (DeGroot and Fienberg, 1983; Murphy and Winkler, 1977). This property requires
the subjective probabilities to match the relative empirical frequencies: intuitively, if we could
observe a long run of predictions (0.5, 0.1, 0.1, 0.3) for tumour grades 1, 2, 3, and 4, the empirical
frequencies of the true tumour grades should be (0.5, 0.1, 0.1, 0.3). Note that accuracy and calibration
are two complementary properties: a model with over-confident predictions can be highly accurate
but miscalibrated, whereas a model that always reports the overall proportion of patients of each
tumour grade in the considered population is calibrated but highly inaccurate.

Research of calibration in statistics and machine learning literature has been focused mainly on binary
classification problems or the most confident predictions: common calibration measures such as the
expected calibration error (ECE) (Naeini et al., 2015), the maximum calibration error (MCE) (Naeini
et al., 2015), and the kernel-based maximum mean calibration error (MMCE) (Kumar et al., 2018),
and reliability diagrams (Murphy and Winkler, 1977) have been developed for binary classification.
This is insufficient since many recent applications of machine learning involve multiple classes.
Furthermore, the crucial finding of Guo et al. (2017) that many modern deep neural networks are
miscalibrated is also based only on the most confident prediction.

Recently Vaicenavicius et al. (2019) suggested that this analysis might be too reduced for many
realistic scenarios. In our example, a prediction of (0.5, 0.3, 0.1, 0.1) is fundamentally different from
a prediction of (0.5, 0.1, 0.1, 0.3), since according to the model in the first case it is only half as
likely that a tumour is of grade 3 or 4, and hence the subjective probability of missing out on a more
aggressive therapy is smaller. However, commonly in the study of calibration all predictions with
a highest reported confidence score of 0.5 are grouped together and a calibrated model has only
to be correct about the most confident tumour grade in 50% of the cases, regardless of the other
predictions. Although the ECE can be generalized to multi-class classification, its applicability seems
to be limited since its histogram-regression based estimator requires partitioning of the potentially
high-dimensional probability simplex and is asymptotically inconsistent in many cases (Vaicenavicius
et al., 2019).

2 Our contribution

In this work, we propose and study a general framework of calibration measures for multi-class
classification. We show that this framework encompasses common calibration measures for binary
classification such as the expected calibration error (ECE), the maximum calibration error (MCE),
and the maximum mean calibration error (MMCE) by Kumar et al. (2018). In more detail we study
a class of measures based on vector-valued reproducing kernel Hilbert spaces, for which we derive
consistent and unbiased estimators. The statistical properties of the proposed estimators are not only
theoretically appealing, but also of high practical value, since they allow us to address two main
problems in calibration evaluation.

As discussed by Vaicenavicius et al. (2019), all calibration error estimates are inherently random,
and comparing competing models based on these estimates without taking the randomness into
account can be very misleading, in particular when the estimators are biased (which, for instance,
is the case for the commonly used histogram-regression based estimator of the ECE). Even more
fundamentally, all commonly used calibration measures lack a meaningful unit or scale and are
therefore not interpretable as such (regardless of any finite sample issues).
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The consistency and unbiasedness of the proposed estimators facilitate comparisons between compet-
ing models, and allow us to derive multiple statistical tests for calibration that exploit these properties.
Moreover, by viewing the estimators as calibration test statistics, with well-defined bounds and
approximations of the corresponding p-value, we give them an interpretable meaning.

We evaluate the proposed estimators and statistical tests empirically and compare them with ex-
isting methods. To facilitate multi-class calibration evaluation we provide the Julia packages
ConsistencyResampling.jl (Widmann, 2019c), CalibrationErrors.jl (Widmann, 2019a),
and CalibrationTests.jl (Widmann, 2019b) for consistency resampling, calibration error esti-
mation, and calibration tests, respectively.

3 Background

We start by shortly summarizing the most relevant definitions and concepts. Due to space constraints
and to improve the readability of our paper, we do not provide any proofs in the main text but only
refer to the results in the supplementary material, which is intended as a reference for mathematically
precise statements and proofs.

3.1 Probabilistic setting

Let (X,Y ) be a pair of random variables with X and Y representing inputs (features) and outputs,
respectively. We focus on classification problems and hence without loss of generality we may
assume that the outputs consist of the m classes 1, . . . , m.

Let ∆m denote the (m− 1)-dimensional probability simplex ∆m := {z ∈ Rm≥0 : ‖z‖1 = 1}. Then a
probabilistic model g is a function that for every input x outputs a prediction g(x) ∈ ∆m that models
the distribution (

P[Y = 1 |X = x], . . . ,P[Y = m |X = x]
)
∈ ∆m

of class Y given input X = x.

3.2 Calibration

3.2.1 Common notion

The common notion of calibration, as, e.g., used by Guo et al. (2017), considers only the most
confident predictions maxy gy(x) of a model g. According to this definition, a model is calibrated if

P[Y = arg max
y

gy(X) | max
y

gy(X)] = max
y

gy(X) (1)

holds almost always. Thus a model that is calibrated according to Eq. (1) ensures that we can partly
trust the uncertainties reported by its predictions. As an example, for a prediction of (0.4, 0.3, 0.3)
the model would only guarantee that in the long run inputs that yield a most confident prediction of
40% are in the corresponding class 40% of the time.1

3.2.2 Strong notion

According to the more general calibration definition of Bröcker (2009); Vaicenavicius et al. (2019),
a probabilistic model g is calibrated if for almost all inputs x the prediction g(x) is equal to the
distribution of class Y given prediction g(X) = g(x). More formally, a calibrated model satisfies

P[Y = y | g(X)] = gy(X) (2)

almost always for all classes y ∈ {1, . . . ,m}. As Vaicenavicius et al. (2019) showed, for multi-class
classification this formulation is stronger than the definition of Zadrozny and Elkan (2002) that only
demands calibrated marginal probabilities. Thus we can fully trust the uncertainties reported by the
predictions of a model that is calibrated according to Eq. (2). The prediction (0.4, 0.3, 0.3) would
actually imply that the class distribution of the inputs that yield this prediction is (0.4, 0.3, 0.3).
To emphasize the difference to the definition in Eq. (1), we call calibration according to Eq. (2)
calibration in the strong sense or strong calibration.

1This notion of calibration does not consider for which class the most confident prediction was obtained.
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To simplify our notation, we rewrite Eq. (2) in vectorized form. Equivalent to the definition above, a
model g is calibrated in the strong sense if

r(g(X))− g(X) = 0 (3)

holds almost always, where

r(ξ) :=
(
P[Y = 1 | g(X) = ξ], . . . ,P[Y = m | g(X) = ξ]

)
is the distribution of class Y given prediction g(X) = ξ.

The calibration of certain aspects of a model, such as the five largest predictions or groups of
classes, can be investigated by studying the strong calibration of models induced by so-called
calibration lenses. For more details about evaluation and visualization of strong calibration we refer
to Vaicenavicius et al. (2019).

3.3 Matrix-valued kernels

The miscalibration measure that we propose in this work is based on matrix-valued kernels k : ∆m ×
∆m → Rm×m. Matrix-valued kernels can be defined in a similar way as the more common real-
valued kernels, which can be characterized as symmetric positive definite functions (Berlinet and
Thomas-Agnan, 2004, Lemma 4).

Definition 1 (Micchelli and Pontil (2005, Definition 2); Caponnetto et al. (2008, Definition 1)).
We call a function k : ∆m ×∆m → Rm×m a matrix-valued kernel if for all s, t ∈ ∆m k(s, t) =
k(t, s)ᵀ and it is positive semi-definite, i.e., if for all n ∈ N, t1, . . . , tn ∈ ∆m, and u1, . . . , un ∈ Rm

n∑
i,j=1

uᵀi k(ti, tj)uj ≥ 0.

There exists a one-to-one mapping of such kernels and reproducing kernel Hilbert spaces (RKHSs)
of vector-valued functions f : ∆m → Rm. We provide a short summary of RKHSs of vector-valued
functions on the probability simplex in Appendix D. A more detailed general introduction to RKHSs
of vector-valued functions can be found in the publications by Caponnetto et al. (2008); Carmeli et al.
(2010); Micchelli and Pontil (2005).

Similar to the scalar case, matrix-valued kernels can be constructed from other matrix-valued kernels
and even from real-valued kernels. Very simple matrix-valued kernels are kernels of the form
k(s, t) = k̃(s, t)Im, where k̃ is a scalar-valued kernel, such as the Gaussian or Laplacian kernel,
and Im is the identity matrix. As Example D.1 shows, this construction can be generalized by, e.g.,
replacing the identity matrix with an arbitrary positive semi-definite matrix.

An important class of kernels are so-called universal kernels. Loosely speaking, a kernel is called uni-
versal if its RKHS is a dense subset of the space of continuous functions, i.e., if in the neighbourhood
of every continuous function we can find a function in the RKHS. Prominent real-valued kernels on
the probability simplex such as the Gaussian and the Laplacian kernel are universal, and can be used
to construct universal matrix-valued kernels of the form in Example D.1, as Lemma D.3 shows.

4 Unification of calibration measures

In this section we introduce a general measure of strong calibration and show its relation to other
existing measures.

4.1 Calibration error

In the analysis of strong calibration the discrepancy in the left-hand side of Eq. (3) lends itself
naturally to the following calibration measure.

Definition 2. Let F be a non-empty space of functions f : ∆m → Rm. Then the calibration error
(CE) of model g with respect to class F is

CE[F , g] := sup
f∈F

E [(r(g(X))− g(X))
ᵀ
f(g(X))] .
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A trivial consequence of the design of the CE is that the measure is zero for every model that is
calibrated in the strong sense, regardless of the choice of F . The converse statement is not true in
general. As we show in Theorem C.2, the class of continuous functions is a space for which the
CE is zero if and only if model g is strongly calibrated, and hence allows to characterize calibrated
models. However, since this space is extremely large, for every model the CE is either 0 or∞.2.
Thus a measure based on this space does not allow us to compare miscalibrated models and hence is
rather impractical.

4.2 Kernel calibration error

Due to the correspondence between kernels and RKHSs we can define the following kernel measure.

Definition 3. Let k be a matrix-valued kernel as in Definition 1. Then we define the kernel calibration
error (KCE) with respect to kernel k as KCE[k, g] := CE[F , g], where F is the unit ball in the
RKHS corresponding to kernel k.

As mentioned above, a RKHS with a universal kernel is a dense subset of the space of continuous
functions. Hence these kernels yield a function space that is still large enough for identifying strongly
calibrated models.

Theorem 1 (cf. Theorem C.1). Let k be a matrix-valued kernel as in Definition 1, and assume that
k is universal. Then KCE[k, g] = 0 if and only if model g is calibrated in the strong sense.

From the supremum-based Definition 2 it might not be obvious how the KCE can be evaluated.
Fortunately, there exists an equivalent kernel-based formulation.

Lemma 1 (cf. Lemma E.2). Let k be a matrix-valued kernel as in Definition 1. If
E[‖k(g(X), g(X))‖] <∞, then

KCE[k, g] =
(
E
[
(eY − g(X))

ᵀ
k(g(X), g(X ′))(eY ′ − g(X ′))

])1/2

, (4)

where (X ′, Y ′) is an independent copy of (X,Y ) and ei denotes the ith unit vector.

4.3 Expected calibration error

The most common measure of calibration error is the expected calibration error (ECE). Typically it is
used for quantifying calibration in a binary classification setting but it generalizes to strong calibration
in a straightforward way. Let d : ∆m×∆m → R≥0 be a distance measure on the probability simplex.
Then the expected calibration error of a model g with respect to d is defined as

ECE[d, g] = E[d(r(g(X)), g(X))]. (5)

If d(p, q) = 0⇔ p = q, as it is the case for standard choices of d such as the total variation distance
or the (squared) Euclidean distance, then ECE[d, g] is zero if and only if g is strongly calibrated as
per Eq. (3).

The ECE with respect to the cityblock distance, the total variation distance, or the squared Euclidean
distance, are special cases of the calibration error CE, as we show in Lemma I.1.

4.4 Maximum mean calibration error

Kumar et al. (2018) proposed a kernel-based calibration measure, the so-called maximum mean
calibration error (MMCE), for training (better) calibrated neural networks. In contrast to their work,
in our publication we do not discuss how to obtain calibrated models but focus on the evaluation
of calibration and on calibration tests. Moreover, the MMCE applies only to a binary classification
setting whereas our measure quantifies strong calibration and hence is more generally applicable. In
fact, as we show in Example I.1, the MMCE is a special case of the KCE.

2Assume CE[F , g] < ∞ and let f1, f2, . . . be a sequence of continuous functions with CE[F , g] =
limn→∞ E [(r(g(X))− g(X))ᵀfn(g(X))]. From Remark C.2 we know that CE[F , g] ≥ 0. Moreover,

f̃n := 2fn are continuous functions with 2CE[F , g] = limn→∞ E
[
(r(g(X))− g(X))ᵀf̃n(g(X))

]
≤

supf∈F E [(r(g(X))− g(X))ᵀf(g(X))] = CE[F , g]. Thus CE[F , g] = 0.
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5 Calibration error estimators

Consider the task of estimating the calibration error of model g using a validation set D =
{(Xi, Yi)}ni=1 of n i.i.d. random pairs of inputs and labels that are distributed according to (X,Y ).

From the expression for the ECE in Eq. (5), the natural (and, indeed, standard) approach for estimating
the ECE is as the sample average of the distance d between the predictions g(X) and the calibration
function r(g(X)). However, this is problematic since the calibration function is not readily available
and needs to be estimated as well. Typically, this is addressed using histogram-regression, see, e.g.,
Guo et al. (2017); Naeini et al. (2015); Vaicenavicius et al. (2019), which unfortunately leads to
inconsistent and biased estimators in many cases (Vaicenavicius et al., 2019) and can scale poorly to
large m. In contrast, for the KCE in Eq. (4) there is no explicit dependence on r, which enables us to
derive multiple consistent and also unbiased estimators.

Let k be a matrix-valued kernel as in Definition 1 with E[‖k(g(X), g(X))‖] < ∞, and define for
1 ≤ i, j ≤ n

hi,j := (eYi
− g(Xi))

ᵀ
k(g(Xi), g(Xj))(eYj

− g(Xj)).

Then the estimators listed in Table 1 are consistent estimators of the squared kernel calibration error
SKCE[k, g] := KCE2[k, g] (see Lemmas F.1 to F.3). The subscript letters “q” and “l” refer to the
quadratic and linear computational complexity of the unbiased estimators, respectively.

Table 1: Three consistent estimators of the SKCE.

Notation Definition Properties Complexity

ŜKCEb n−2
∑n
i,j=1 hi,j biased O(n2)

ŜKCEuq

(
n
2

)−1∑
1≤i<j≤n hi,j unbiased O(n2)

ŜKCEul bn/2c−1∑bn/2c
i=1 h2i−1,2i unbiased O(n)

6 Calibration tests

In general, calibration errors do not have a meaningful unit or scale. This renders it difficult to
interpret an estimated non-zero error and to compare different models. However, by viewing the
estimates as test statistics with respect to Eq. (3), they obtain an interpretable probabilistic meaning.

Similar to the derivation of the two-sample tests by Gretton et al. (2012), we can use the consistency
and unbiasedness of the estimators of the SKCE presented above to obtain bounds and approximations
of the p-value for the null hypothesis H0 that the model is calibrated, i.e., for the probability that the
estimator is greater than or equal to the observed calibration error estimate, if the model is calibrated.
These bounds and approximations do not only allow us to perform hypothesis testing of the null
hypothesis H0, but they also enable us to transfer unintuitive calibration error estimates to an intuitive
and interpretable probabilistic setting.

As we show in Theorems H.2 to H.4, we can obtain so-called distribution-free bounds without making
any assumptions about the distribution of (X,Y ) or the model g. A downside of these uniform
bounds is that usually they provide only a loose bound of the p-value.

Lemma 2 (Distribution-free bounds (see Theorems H.2 to H.4)). Let k be a matrix-valued kernel
as in Definition 1, and assume that Kp;q := sups,t∈∆m ‖k(s, t)‖p;q <∞ for some 1 ≤ p, q ≤ ∞.3

Let t > 0 and Bp;q := 21+1/p−1/qKp;q , then for the biased estimator we can bound

P
[

ŜKCEb ≥ t
∣∣∣H0

]
≤ exp

(
− 1

2

(
max

{
0,
√
nt/Bp;q − 1

})2
)
,

and for either of the unbiased estimators T ∈ {ŜKCEuq, ŜKCEul}, we can bound

P
[
T ≥ t

∣∣∣H0

]
≤ exp

(
− bn/2ct

2

2B2
p;q

)
.

3For a matrix A we denote by ‖A‖p;q the induced matrix norm supx 6=0 ‖Ax‖q/‖x‖p.
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Asymptotic bounds exploit the asymptotic distribution of the test statistics under the null hypothesis,
as the number of validation data points goes to infinity. The central limit theorem implies that the
linear estimator is asymptotically normally distributed.

Lemma 3 (Asymptotic distribution of ŜKCEul (see Corollary G.1)). Let k be a matrix-valued
kernel as in Definition 1, and assume that E[‖k(g(X), g(X))‖] <∞. If Var[hi,j ] <∞, then

P
[√
bn/2c ŜKCEul ≥ t

∣∣∣H0

]
→ 1− Φ

(
t

σ̂

)
as n→∞,

where σ̂ is the sample standard deviation of h2i−1,2i (i = 1, . . . , bn/2c) and Φ is the cumulative
distribution function of the standard normal distribution.

In Theorem G.2 we derive a theoretical expression of the asymptotic distribution of n ŜKCEuq,
under the assumption of strong calibration. This limit distribution can be approximated, e.g., by
bootstrapping (Arcones and Giné, 1992) or Pearson curve fitting, as discussed by Gretton et al. (2012).

7 Experiments

We conduct experiments to confirm the derived theoretical properties of the proposed calibration error
estimators empirically and to compare them with a standard histogram-regression based estimator of
the ECE, denoted by ÊCE.4

We construct synthetic data sets {(g(Xi), Yi)}250
i=1 of 250 labeled predictions form = 10 classes from

three generative models. For each model we first sample predictions g(Xi) ∼ Dir(0.1, . . . , 0.1), and
then simulate corresponding labels Yi conditionally on g(Xi) from

M1 : Cat(g(Xi)), M2 : 0.5 Cat(g(Xi)) + 0.5 Cat(1, 0, . . . , 0), M3 : Cat(0.1, . . . , 0.1),

where M1 gives a calibrated model, and M2 and M3 are uncalibrated. In Appendix J.2 we
investigate the theoretical properties of these models in more detail.

For simplicity, we use the matrix-valued kernel k(x, y) = exp (−‖x− y‖/ν)I10, where the kernel
bandwidth ν > 0 is chosen by the median heuristic. The total variation distance is a common distance
measure of probability distributions and the standard distance measure for the ECE (Bröcker and
Smith, 2007; Guo et al., 2017; Vaicenavicius et al., 2019), and hence it is chosen as the distance
measure for all studied calibration errors.

7.1 Calibration error estimates

In Fig. 1 we show the distribution of ÊCE and of the three proposed estimators of the SKCE, evalu-
ated on 104 randomly sampled data sets from each of the three models. The true calibration error of
these models, indicated by a dashed line, is calculated theoretically for the ECE (see Appendix J.2.1)
and empirically for the SKCE using the sample mean of all unbiased estimates of ŜKCEuq.

We see that the standard estimator of the ECE exhibits both negative and positive bias, whereas
ŜKCEb is theoretically guaranteed to be biased upwards. The results also confirm the unbiasedness
of ŜKCEul.

7.2 Calibration tests

We repeatedly compute the bounds and approximations of the p-value for the calibration error
estimators that were derived in Section 6 on 104 randomly sampled data sets from each of the three
models. More concretely, we evaluate the distribution-free bounds for ŜKCEb (Db), ŜKCEuq

(Duq), and ŜKCEul (Dul) and the asymptotic approximations for ŜKCEuq (Auq) and ŜKCEul (Al),
where the former is approximated by bootstrapping. We compare them with a previously proposed
hypothesis test for the standard ECE estimator based on consistency resampling (C), in which

4The implementation of the experiments is available online at https://github.com/devmotion/
CalibrationPaper.
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Figure 1: Distribution of calibration error estimates of 104 data sets that are randomly sampled from
the generative models M1, M2, and M3. The solid line indicates the mean of the calibration error
estimates, and the dashed line displays the true calibration error.

data sets are resampled under the assumption that the model is calibrated by sampling labels from
resampled predictions (Bröcker and Smith, 2007; Vaicenavicius et al., 2019).

For a chosen significance level α we compute from the p-value approximations p1, . . . , p104 the
empirical test error

1

104

104∑
i=1

1[0,α](pi) (for M1) and
1

104

104∑
i=1

1(α,1](pi) (for M2 and M3).

In Fig. 2 we plot these empirical test errors versus the significance level.

As expected, the distribution-free bounds seem to be very loose upper bounds of the p-value, resulting
in statistical tests without much power. The asymptotic approximations, however, seem to estimate
the p-value quite well on average, as can be seen from the overlap with the diagonal in the results for
the calibrated model M1 (the empirical test error matches the chosen significance level). Additionally,
calibration tests based on asymptotic distribution of these statistics, and in particular of ŜKCEuq, are
quite powerful in our experiments, as the results for the uncalibrated models M2 and M3 show. For
the calibrated model, consistency resampling leads to an empirical test error that is not upper bounded
by the significance level, i.e., the null hypothesis of the model being calibrated is rejected too often.
This behaviour is caused by an underestimation of the p-value on average, which unfortunately makes
the calibration test based on consistency resampling for the standard ECE estimator unreliable.

7.3 Additional experiments

In Appendix J.2.3 we provide additional results for varying number of classes and a non-standard
ECE estimator with data-dependent bins. We observe that the bias of ÊCE becomes more prominent
with increasing number of classes, showing high calibration error estimates even for calibrated models.
The estimators of the SKCE are not affected by the number of classes in the same way. In some
experiments with 100 and 1000 classes, however, the distribution of ŜKCEul shows multi-modality.

The considered calibration measures depend only on the predictions and the true labels, not on how
these predictions are computed. Hence directly specifying the predictions allows a clean numerical
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Figure 2: Empirical test error versus significance level for different bounds and approximations of
the p-value, evaluated on 104 data sets that are randomly sampled from the generative models M1,
M2, and M3. The dashed line highlights the diagonal of the unit square.

evaluation and enables comparisons of the estimates with the true calibration error. Nevertheless, we
provide a more practical evaluation of calibration for several modern neural networks in Appendix J.3.

8 Conclusion

We have presented a unified framework for quantifying the calibration error of probabilistic classifiers.
The framework encompasses several existing error measures and enables the formulation of a new
kernel-based measure. We have derived unbiased and consistent estimators of the kernel-based error
measures, which are properties not readily enjoyed by the more common and less tractable ECE.
The impact of the kernel and its hyperparameters on the estimators is an important question for future
research. We have refrained from investigating it in this paper, since it deserves a more exhaustive
study than, what we felt, would have been possible in this work.

The calibration error estimators can be viewed as test statistics. This confers probabilistic interpretabil-
ity to the error measures. Specifically, we can compute well-founded bounds and approximations of
the p-value for the observed error estimates under the null hypothesis that the model is calibrated.
We have derived distribution-free bounds and asymptotic approximations for the estimators of the
proposed kernel-based error measure, that allow reliable calibration tests in contrast to previously
proposed tests based on consistency resampling with the standard estimator of the ECE.
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A Notation

We introduce some additional notation to keep the following discussion concise.

Let U be a compact metric space and V be a Hilbert space. In this paper we only consider U = [0, 1]
and U = ∆m. By C(U, V ) we denote the space of continuous functions f : U → V .

For 1 ≤ p <∞, Lp(U, µ;V ) is the space of (equivalence classes of) measurable functions f : U → V

such that ‖f‖p is µ-integrable, equipped with norm ‖f‖µ,p = (
∫
U
‖f(x)‖p µ(dx))

1/p; for p =∞,
L∞(U, µ;V ) is the space of µ-essentially bounded measurable functions f : U → V with norm
‖f‖µ,∞ = µ- ess supx∈X ‖f(x)‖. We denote the closed unit ball of the space Lp(U, µ;V ) by
Kp(U, µ;V ) := {f ∈ Lp(U, µ;V ) : ‖f‖µ,p ≤ 1}.
If the norm ‖.‖V on V is not clear from the context we indicate it by writing Lp(U, µ;V, ‖.‖V ),
Kp(U, µ;V, ‖.‖V ), and ‖.‖µ,p;‖.‖V . If V ⊂ Rd, all possible norms ‖.‖V are equivalent and hence we
choose ‖.‖p on V to simplify our calculations, if not stated otherwise. Moreover, if V ⊂ Rd and
‖.‖V = ‖.‖q for some 1 ≤ q ≤ ∞, for convenience we write ‖.‖µ,p;q = ‖.‖µ,p;‖.‖V .

Let W be another Hilbert space. Then L(V,W ) denotes the space of bounded linear operators
T : V → W ; if W = V , we write L(V ) := L(V, V ). The induced operator norm on L(V,W ) is
defined by

‖T‖‖.‖V ;‖.‖W = inf{c ≥ 0: ‖Tv‖W ≤ c‖v‖V for all v ∈ V }
= sup
v∈V : ‖v‖V ≤1

‖Tv‖W .

If W = V , we write ‖.‖‖.‖V = ‖.‖‖.‖V ;‖.‖V . Moreover, for convenience if V ⊂ Rd and ‖.‖V = ‖.‖p
for some 1 ≤ p ≤ ∞, we use the notation ‖.‖p;‖.‖W = ‖.‖‖.‖V ;‖.‖W . In the same way, if W ⊂ Rd
and ‖.‖W = ‖.‖q for some 1 ≤ q ≤ ∞, we write ‖.‖‖.‖V ;q = ‖.‖‖.‖V ;‖.‖W .

By B(T ) we denote the Borel σ-algebra of a topological space T .

We write µA for the distribution of a random variable A, i.e., the pushforward measure it induces, if
A is defined on a probability space with probability measure µ.

B Probabilistic setting

Let (Ω,A, µ) be a probability space. Let m ∈ N and define the random variables X : (Ω,A) →
(X ,ΣX) and Y : (Ω,A)→ ({1, . . . ,m}, 2{1,...,m}), such that ΣX contains all singletons. We denote
a version of the regular conditional distribution of Y given X by µY |X(·|x) for all x ∈ X .

We consider the problem of learning a measurable function g : (X ,ΣX) → (∆m,B(∆m)) that
returns the prediction gy(x) of µY |X({y}|x) for all x ∈ X and y ∈ {1, . . . ,m}. We define the
random variable G : (Ω,A)→ (∆m,B(∆m)) as G := g(X).

In the same way as above, we denote a version of the regular conditional distribution of Y given G
by µY |G(·|t) for all t ∈ ∆m. The function δ : (∆m,B(∆m))→ (Rm,B(Rm)), given by

δ(t) :=

 µY |G(1|t)− t
...

µY |G(m|t)− t


for all t ∈ ∆m, gives rise to another random variable ∆: (Ω,A)→ (Rm,B(Rm)) that is defined by
∆ := δ(G).

Using the newly introduced mathematical notation, we can reformulate strong calibration in a compact
way. A model g is calibrated in the strong sense if µY |G(·|G) = G almost surely, or equivalently if
∆ = 0 almost surely.
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C Calibration error

Definition C.1 (Calibration error). Let F ⊂ L1(∆m, µG;Rm) be non-empty. Then the calibration
error CE of model g with respect to class F is

CE[F , g] := sup
f∈F

E [〈∆, f(G)〉Rm ] .

Remark C.1. Note that ‖∆‖∞ ≤ 1 almost surely, and thus ‖δ‖µG,∞ ≤ 1. Hence by Hölder’s
inequality for all f ∈ F we have

|E[〈∆, f(G)〉Rm ]| ≤ E[|〈∆, f(G)〉Rm |] ≤ ‖δ‖µG,∞‖f‖µG,1 ≤ ‖f‖µG,1 <∞.
However, it is still possible that CE[F , g] =∞.

Remark C.2. If F is symmetric in the sense that f ∈ F implies −f ∈ F , then CE[F , g] ≥ 0.

The measure highly depends on the choice of F but strong calibration always implies a calibration
error of zero.

Theorem C.1 (Strong calibration implies zero error). Let F ⊂ L1(∆m, µG;R). If model g is
calibrated in the strong sense, then CE[F , g] = 0.

Proof. If model g is calibrated in the strong sense, then ∆ = 0 almost surely. Hence for all f ∈ F
we have E[〈∆, f(G)〉R] = 0, which implies CE[F , g] = 0.

Of course, the converse statement is not true in general. A similar result as above shows that the class
of continuous functions, albeit too large and impractical, allows to identify calibrated models.

Theorem C.2. Let F = C(∆m,Rm). Then CE[F , g] = 0 if and only if model g is calibrated in the
strong sense.

Proof. Note that F is well defined since F ⊂ L1(∆m, µG;Rm).

If model g is calibrated in the strong sense, then CE[F , g] = 0 by Theorem C.1.

If model g is not calibrated in the strong sense, then ∆ = 0 does not hold almost surely. In particular,
there exists s ∈ {−1, 1}m such that 〈∆, s〉Rm ≤ 0 does not hold almost surely. Define the function
fs : ∆m → Rm by fs := 〈δ(·), s〉Rm and let As := f−1

s ((0,∞)). Then As ∈ B(∆m) since fs is
Borel measurable, and µG(As) > 0. Hence we know that

αs := E[〈∆, s1As
(G)〉Rm ] > 0.

Since µG is a Borel probability measure on a compact metric space, it is regular and hence there
exist a compact set K and an open set U such that K ⊂ As ⊂ U and µG(U \K) < αs/4 (Rudin,
1986, Theorem 2.17). Thus by Urysohn’s lemma applied to the closed sets K and U c, there exists
a continuous function h ∈ C(∆m,R) such that 1K ≤ h ≤ 1U . By defining f = sh ∈ C(∆m,Rm)
and applying Hölder’s inequality we obtain

E[〈∆, f(G)〉Rm ] = E[〈∆, s1As
(G)〉Rm ]

+ E[〈∆, f(G)− s1As
(G)〉Rm ]

≥ αs − |E[(h(G)− 1As
(G))〈∆, s〉Rm ]|

≥ αs − E[|h(G)− 1As(G)||〈∆, s〉Rm |]
≥ αs − E[1U\K(G)‖∆‖1‖s‖∞] ≥ αs − 2µG(U \K)

> αs − αs/2 = αs/2 > 0.

This implies CE[F , g] > 0.

D Reproducing kernel Hilbert spaces of vector-valued functions on the
probability simplex

Definition D.1 (Micchelli and Pontil (2005, Definition 1)). Let H be a Hilbert space of vector-
valued functions f : ∆m → Rm with inner product 〈., .〉H. We callH a reproducing kernel Hilbert
space (RKHS), if for all t ∈ ∆m and u ∈ Rm the functional Et,u : H → R, Et,uf := 〈u, f(t)〉Rm ,
is a bounded (or equivalently continuous) linear operator.
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Riesz’s representation theorem ensures that there exists a unique function k : ∆m ×∆m → Rm×m
such that for all t ∈ ∆m the function k(·, t) is a linear map from ∆m to H and for all u ∈ Rm it
satisfies the so-called reproducing property

〈u, f(t)〉Rm = Et,uf = 〈k(·, t)u, f〉H. (D.1)

It can be shown that function k is self-adjoint5 and positive semi-definite, and hence a kernel
according to Definition 1 (Micchelli and Pontil, 2005, Proposition 1). Similar to the scalar-valued
case, conversely by the Moore-Aronszaijn theorem (Aronszajn, 1950) to every kernel k : ∆m×∆m →
L(Rm) there exists a unique RKHS H ⊂ (Rm)

∆m

with k as reproducing kernel (Micchelli and
Pontil, 2005, Theorem 1).

Other useful properties are summarized in Lemma D.1. Micchelli and Pontil (2005) considered only
the Euclidean norm on Rm, corresponding to p = q = 2 in our statement. For convenience we use
the notation ‖.‖p;H = ‖.‖‖.‖p;‖.‖H .

Lemma D.1 (Micchelli and Pontil (2005, Proposition 1)). Let H ⊂ (Rm)
∆m

be a RKHS with
kernel k : ∆m ×∆m → L(Rm). Let 1 ≤ p, q ≤ ∞ with Hölder conjugates p′ and q′, respectively.

1. For all t ∈ ∆m

‖k(·, t)‖p;H = ‖k(t, t)‖1/2p;p′ . (D.2)

2. For all s, t ∈ ∆m

‖k(s, t)‖p;q ≤ ‖k(s, s)‖1/2q′;q‖k(t, t)‖1/2p;p′ . (D.3)

3. For all f ∈ H and t ∈ ∆m

‖f(t)‖p ≤ ‖f‖H‖k(·, t)‖p′;H = ‖f‖H‖k(t, t)‖1/2p′;p. (D.4)

Proof. Let t ∈ ∆m. From the reproducing property, Hölder’s inequality, and the definition of the
operator norm, we obtain for all u ∈ Rm

‖k(·, t)u‖2H = 〈k(·, t)u, k(·, t)u〉H = 〈u, k(t, t)u〉Rm ≤ ‖u‖p‖k(t, t)u‖p′ ≤ ‖u‖2p‖k(t, t)‖p;p′ ,
which implies that

‖k(·, t)‖p;H = sup
u∈Rm\{0}

‖k(·, t)u‖H
‖u‖p

≤ ‖k(t, t)‖1/2p;p′ . (D.5)

On the other hand, for all u, v ∈ Rm it follows from the reproducing property, the Cauchy-Schwarz
inequality, and the definition of the operator norm that

〈u, k(t, t)v〉Rm = 〈k(·, t)u, k(·, t)v〉H ≤ ‖k(·, t)u‖H‖k(·, t)v‖H ≤ ‖u‖p‖v‖p‖k(·, t)‖2p;H.
Since the `p-norm is the dual norm of the `p′ -norm, it follows that

‖k(t, t)v‖p′ = sup
u∈Rm : ‖u‖p≤1

〈u, k(t, t)v〉Rm ≤ ‖v‖p‖k(·, t)‖2p;H,

which implies that

‖k(t, t)‖p;p′ = sup
v∈Rm\{0}

‖k(t, t)v‖p′
‖v‖p

≤ ‖k(·, t)‖2p;H. (D.6)

Equation (D.2) follows from Eqs. (D.5) and (D.6).

Let s, t ∈ ∆m. From the reproducing property, the Cauchy-Schwarz inequality, and the definition of
the operator norm, we get for all u, v ∈ Rm

〈u, k(s, t)v〉Rm ≤ 〈k(·, s)u, k(·, t)v〉H ≤ ‖k(·, s)u‖H‖k(·, t)v‖H
≤ ‖u‖q′‖v‖p‖k(·, s)‖q′;H‖k(·, t)‖p;H.

5Let U , V be two Hilbert spaces. Then the adjoint of a linear operator T ∈ L(U, V ) is the linear operator
T ∗ ∈ L(V,U) such that for all u ∈ U , v ∈ V 〈Tu, v〉V = 〈u, T ∗v〉U .
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Thus we obtain

‖k(s, t)v‖q = sup
u∈Rm : ‖u‖q′≤1

〈u, k(s, t)v〉Rm ≤ ‖v‖p‖k(·, s)‖q′;H‖k(·, t)‖p;H,

which implies

‖k(s, t)‖p;q = sup
v∈Rm\{0}

‖k(s, t)v‖q
‖v‖p

≤ ‖k(·, s)‖q′;H‖k(·, t)‖p;H.

Hence from Eq. (D.2) we obtain Eq. (D.3).

For the third statement, let f ∈ H and t ∈ ∆m. From the reproducing property, the Cauchy-Schwarz
inequality, and the definition of the operator norm, we obtain for all u ∈ Rm

〈u, f(t)〉Rm = 〈k(·, t)u, f〉H ≤ ‖k(·, t)u‖H‖f‖H ≤ ‖u‖p′‖k(·, t)‖p′;H‖f‖H.
Thus the duality of the `p- and the `p′ -norm implies

‖f(t)‖p = sup
u∈Rm : ‖u‖p′≤1

〈u, f(t)〉Rm ≤ ‖k(·, t)‖p′;H‖f‖H,

which together with Eq. (D.2) yields Eq. (D.4).

If µ is a measure on ∆m, we define for 1 ≤ p, q ≤ ∞ ‖k‖µ,p;q := ‖k̃q‖µ,p where k̃q : ∆m → R is
given by k̃(t) := ‖k(·, t)‖q;H = ‖k(t, t)‖1/2q;q′ . We omit the value of q if it is clear from the context or
does not matter, since all norms on Rm are equivalent.

It is possible to construct certain classes of matrix-valued kernels from scalar-valued kernels, as the
following example shows.

Example D.1 (Micchelli and Pontil (2005); Caponnetto et al. (2008, Example 1))
For all i ∈ {1, . . . , n}, let ki : ∆m × ∆m → R be a scalar-valued kernel and Ai ∈ Rm×m be a
positive semi-definite matrix. Then the function

k : ∆m ×∆m → Rm×m, k(s, t) :=

n∑
i=1

ki(s, t)Ai, (D.7)

is a matrix-valued kernel.

We state a simple result about measurability of functions in the considered RKHSs. The result can be
formulated in a much more general fashion and is similar to a result by Christmann and Steinwart
(2008, Lemma 4.24).

Lemma D.2 (Measurable RKHS). Let H ⊂ (Rm)
∆m

be a RKHS with kernel k : ∆m × ∆m →
L(Rm). Then all f ∈ H are measurable if and only if k(·, t)u ∈ (Rm)

∆m

is measurable for all
t ∈ ∆m and u ∈ Rm.

Proof. If all f ∈ H are measurable, then k(·, t)u ∈ H is measurable for all t ∈ ∆m and u ∈ Rm.

If k(·, t)u is measurable for all t ∈ ∆m and u ∈ Rm, then all functions in H0 :=
span {k(·, t)u : t ∈ ∆m, u ∈ Rm} ⊂ H are measurable.

Let f ∈ H. SinceH = H0 (see, e.g., Carmeli et al., 2010), there exists a sequence (fn)n∈N ⊂ H0

such that limn→∞ ‖f − fn‖H = 0. For all t ∈ ∆m, since the operator k∗(·, t) is continuous, by the
reproducing property we obtain limn→∞ fn(t) = f(t). Thus f is measurable.

By definition (see, e.g., Carmeli et al., 2010, Definition 1), a RKHS with a continuous kernel is a
subspace of the space of continuous functions. The following equivalent formulation is an immediate
consequence of the result by Carmeli et al. (2010).

Corollary D.1 (Carmeli et al. (2010, Proposition 1)). A kernel k : ∆m ×∆m → Rm is continuous
if for all t ∈ ∆m t 7→ ‖k(t, t)‖ is bounded and for all t ∈ ∆m and u ∈ Rm k(·, t)u is a continuous
function from ∆m to Rm.
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An important class of continuous kernels are so-called universal kernels, for which the corresponding
RKHS is a dense subset of the space of continuous functions with respect to the uniform norm. A
result by Caponnetto et al. (2008) shows under what assumptions matrix-valued kernels of the form
in Example D.1 are universal.

Lemma D.3 (Caponnetto et al. (2008, Theorem 14)). For all i ∈ {1, . . . , n}, let ki : ∆m×∆m →
R be a universal scalar-valued kernel and Ai ∈ Rm×m be a positive semi-definite matrix. Then the
matrix-valued kernel defined in Eq. (D.7) is universal if and only if

∑n
i=1Ai is positive definite.

E Kernel calibration error

The one-to-one correspondence between matrix-valued kernels and RKHSs of vector-valued functions
motivates the introduction of the kernel calibration error (KCE) in Definition 3. For certain kernels
we are able to identify strongly calibrated models.

Theorem E.1. Let k : ∆m ×∆m → L(Rm) be a universal continuous kernel. Then KCE[k, g] = 0
if and only if model g is calibrated in the strong sense.

Proof. Let F be the unit ball in the RKHSH ⊂ (Rm)
∆m

corresponding to kernel k. Since kernel k
is continuous, by definition H ⊂ C(∆m,Rm) (Carmeli et al., 2010, Definition 1). Thus F is well
defined since F ⊂ C(∆m,Rm) ⊂ L1(∆m, µG;Rm).

If g is calibrated in the strong sense, it follows from Theorem C.1 that KCE[k, g] = CE[F , g] = 0.

Assume that KCE[k, g] = CE[F , g] = 0. This implies E[〈∆, f(G)〉Rm ] = 0 for all f ∈ F . Let
f ∈ C(∆m,Rm). SinceH is dense in C(∆m,Rm) (Carmeli et al., 2010, Theorem 1), for all ε > 0

there exists a function h ∈ H with ‖f − h‖∞ < ε/2. Define h̃ ∈ F by h̃ := h/‖h‖H if ‖h‖H 6= 0

and h̃ := h otherwise. Since

E[〈∆, h(G)〉Rm ] = ‖h‖H E[〈∆, h̃(G)〉Rm ] = 0,

by Hölder’s inequality we obtain

|E[〈∆, f(G)〉Rm ]| = |E[〈∆, f(G)− h(G)〉Rm ]|
≤ E[|〈∆, f(G)− h(G)〉Rm |]
≤ ‖δ‖µG,1‖f − h‖µG,∞
≤ 2‖f − h‖∞ < ε.

Thus CE[C(∆m,Rm), g] = 0, and hence g is calibrated in the strong sense by Theorem C.2.

Similar to the maximum mean discrepancy (Gretton et al., 2012), if we consider functions in a RKHS,
we can rewrite the expectation E[〈∆, f(G)〉Rm ] as an inner product in the Hilbert space.

Lemma E.1 (Existence and uniqueness of embedding). LetH ⊂ (Rm)
∆m

be a RKHS with kernel
k : ∆m ×∆m → L(Rm), and assume that k(·, t)u is measurable for all t ∈ ∆m and u ∈ Rm, and
‖k‖µG,1 <∞.

Then there exists a unique embedding µg ∈ H such that for all f ∈ H
E[〈∆, f(G)〉Rm ] = 〈f, µg〉H.

The embedding µg satisfies for all t ∈ ∆m and y ∈ Rm

〈y, µg(t)〉Rm = E[〈∆, k(G, t)y〉Rm ].

Proof. By Lemma D.2 all f ∈ H are measurable. Moreover, by Eq. (D.4) for all f ∈ H we have∫
∆m

‖f(t)‖1µG(dt) ≤ ‖f‖H
∫

∆m

‖k(t, t)‖1/2∞;1 µG(dt)

= ‖f‖H‖k‖µG,1;∞ <∞,
and thusH ⊂ L1(∆m, µG;Rm). Hence from Remark C.1 (with F = H) we know that for all f ∈ H
the expectation E[〈∆, f(G)〉Rm ] exists and is finite.

16



Define the linear operator Tg : H → R by Tgf := E[〈∆, f(G)〉Rm ] for all f ∈ H. In the same way
as above, for all functions f ∈ H Hölder’s inequality and Eq. (D.4) imply

|Tgf | = |E[〈∆, f(G)〉Rm ] ≤ E[|〈∆, f(G)〉Rm |]
≤ ‖δ‖µG,∞‖f‖µG,1

≤ ‖f‖µG,1 ≤ ‖f‖H‖k‖µG,1;∞ <∞.
Thus Tg is a continuous linear operator, and therefore it follows from Riesz’s representation theorem
that there exists a unique function µg ∈ H such that

E[〈∆, f(G)〉Rm ] = Tgf = 〈f, µg〉H
for all f ∈ H. This implies that for all t ∈ ∆m and y ∈ Rm

〈y, µg(t)〉Rm = 〈k(·, t)y, µg〉H = E[〈∆, k(G, t)y〉Rm ].

Lemma E.1 allows us to rewrite KCE[k, g] in a more explicit way.

Lemma E.2 (Explicit formulation). Let H ⊂ (Rm)
∆m

be a RKHS with kernel k : ∆m ×∆m →
L(Rm), and assume that k(·, t)u is measurable for all t ∈ ∆m and u ∈ Rm and ‖k‖µG,1 < ∞.
Then

KCE[k, g] = ‖µg‖H,
where µg is the embedding defined in Lemma E.1. Moreover,

SKCE[k, g] := KCE2[k, g] = E[〈eY − g(X), k(g(X), g(X ′))(eY ′ − g(X ′))〉Rm ],

where (X ′, Y ′) is an independent copy of (X,Y ) and ei denotes the ith unit vector.

Proof. Let F be the unit ball in the RKHS H. From Lemma E.1 we know that for all f ∈ F the
expectation E[〈∆, f(G)〉Rm ] exists and is given by

E[〈∆, f(G)〉Rm ] = 〈f, µg〉H,
where µg is the embedding defined in Lemma E.1. Thus the definition of the dual norm yields

KCE[k, g] = CE[F , g] = sup
f∈F

E[〈∆, f(G)〉Rm ] = sup
f∈F
〈f, µg〉H = ‖µg‖H.

Thus from the reproducing property and Lemma E.1 we obtain

SKCE[k, g] = KCE2[k, g] = 〈µg, µg〉H = E[〈∆, µg(G)〉Rm ]

= E[E[〈∆′, k(G′, G)∆〉Rm |G]]

= E[〈∆, k(G,G′)∆′〉Rm ],

where G′ is an independent copy of G and ∆′ := δ(G′).

By rewriting
∆ = E[eY |G]−G = E[eY −G|G]

and ∆′ in the same way, we get

SKCE[k, g] = E[〈eY −G, k(G,G′)(eY ′ −G′)〉Rm ].

Plugging in the definitions of G and G′ yields

SKCE[k, g] = E[〈eY − g(X), k(g(X), g(X ′))(eY ′ − g(X ′))〉Rm ].

F Estimators

Let D = {(Xi, Yi)}ni=1 be a set of random variables that are i.i.d. as (X,Y ). Regardless of the space
F the plug-in estimator of CE[F , g] is

ĈE[F , g,D] := sup
f∈F

1

n

n∑
i=1

〈δ(Xi, Yi), f(g(Xi))〉Rm .

If F is the unit ball in a RKHS, i.e., for the kernel calibration error, we can calculate this estimator
explicitly.
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Lemma F.1 (Biased estimator). Let F be the unit ball in a RKHS H ⊂ (Rm)
∆m

with kernel
k : ∆m ×∆m → L(Rm). Then

ĈE[F , g,D] =
1

n

 n∑
i,j=1

〈δ(Xi, Yi), k(g(Xi), g(Xj))δ(Xj , Yj)〉Rm

1/2

.

Proof. From the reproducing property and the definition of the dual norm it follows that

ĈE[F , g,D] = sup
f∈F

〈
1

n

n∑
i=1

k(·, g(Xi))δ(Xi, Yi), f

〉
H

=
1

n

∥∥∥∥∥
n∑
i=1

k(·, g(Xi))δ(Xi, Yi)

∥∥∥∥∥
H
.

Applying the reproducing property yields the result.

Since we can uniquely identify the unit ball F with the matrix-valued kernel k and the plug-in
estimator in Lemma F.1 does not depend on F explicitly, we introduce the notation

K̂CE[k, g,D] := ĈE[F , g,D] and ŜKCEb[k, g,D] := K̂CE
2
[k, g,D],

where F is the unit ball in the RKHS H ⊂ (Rm)
∆m

corresponding to kernel k. By removing the
terms involving the same random variables we obtain an unbiased estimator.

Lemma F.2 (Unbiased estimator). Let k : ∆m × ∆m → L(Rm) be a kernel, and assume that
k(·, t)u is measurable for all t ∈ ∆m and u ∈ Rm, and ‖k‖µG,1 <∞. Then

ŜKCEuq[k, g,D] :=
1

n(n− 1)

n∑
i,j=1,
i 6=j

〈δ(Xi, Yi), k(g(Xi), g(Xj))δ(Xj , Yj)〉Rm

is an unbiased estimator of SKCE[k, g].

Proof. The assumptions of Lemma E.2 are satisfied, and hence we know that

SKCE[k, g] = E[〈δ(X,Y ), k(g(X), g(X ′))δ(X ′, Y ′)〉Rm ],

where (X ′, Y ′) is an independent copy of (X,Y ). Since (X,Y ), (X ′, Y ′), and (Xi, Yi) are i.i.d.,
we have

E[ŜKCEuq[k, g,D]] =
1

n(n− 1)

n∑
i=1,
i 6=j

E[〈δ(X,Y ), k(g(X), g(X ′))δ(X ′, Y ′)〉Rm ]

= E[〈δ(X,Y ), k(g(X), g(X ′))δ(X ′, Y ′)〉Rm ]

= SKCE[k, g],

which shows that ŜKCEuq[k, g,D] is an unbiased estimator of SKCE[k, g].

There exists an unbiased estimator with higher variance that scales not quadratically but only linearly
with the number of samples.

Lemma F.3 (Linear estimator). Let k : ∆m ×∆m → L(Rm) be a kernel, and assume that k(·, t)u
is measurable for all t ∈ ∆m and u ∈ Rm, and ‖k‖µG,1 <∞. Then

ŜKCEul[k, g,D] :=
1

bn/2c

bn/2c∑
i=1

〈δ(X2i−1, Y2i−1), k(g(X2i−1), g(X2i))δ(X2i, Y2i)〉Rm

is an unbiased estimator of SKCE[k, g].
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Proof. The assumptions of Lemma E.2 are satisfied, and hence we know that

SKCE[k, g] = E[〈δ(X,Y ), k(g(X), g(X ′))δ(X ′, Y ′)〉Rm ],

where (X ′, Y ′) is an independent copy of (X,Y ). Since (X,Y ), (X ′, Y ′), and (Xi, Yi) are i.i.d.,
we have

E[ŜKCEul[k, g,D]] =
1

bn/2c

bn/2c∑
i=1

E[〈δ(X,Y ), k(g(X), g(X ′))δ(X ′, Y ′)〉Rm ]

= E[〈δ(X,Y ), k(g(X), g(X ′))δ(X ′, Y ′)〉Rm ]

= SKCE[k, g],

which shows that ŜKCEul[k, g,D] is an unbiased estimator of SKCE[k, g].

G Asymptotic distributions

In this section we investigate the asymptotic behaviour of the proposed estimators. We start with a
simple but very useful statement.

Lemma G.1. Let k : ∆m ×∆m → L(Rm) be a kernel, and assume that k(·, t)u is measurable for
all t ∈ ∆m and u ∈ Rm, and ‖k‖µG,2 <∞.

Then Var[〈∆, k(G,G′)∆′〉Rm ] <∞, where G′ is an independent copy of G and ∆′ := δ(G′).

Proof. From the Cauchy-Schwarz inequality and the definition of the operator norm we obtain

E[〈∆, k(G,G′)∆′〉2Rm ] ≤ E[‖∆‖22‖k(G,G′)‖22;2‖∆‖22] ≤ 4E[‖k(G,G′)‖22;2].

Hence by Eq. (D.3)

E[〈∆′, k(G,G′)∆′〉2Rm ] ≤ 4E[‖k(G,G)‖2;2‖k(G′, G′)‖2;2]

= 4E[‖k(G,G)‖2;2]E[‖k(G′, G′)‖2;2] = 4(E[‖k(G,G)‖2;2])
2
,

which implies
E[〈∆, k(G,G′)∆′〉2Rm ] <∞

since by assumption ‖k‖µG,2;2 <∞.

Since the unbiased estimator ŜKCEuq is a U-statistic, we know that the random variable√
n(ŜKCEuq−SKCE) is asymptotically normally distributed under certain conditions.

Theorem G.1. Let k : ∆m ×∆m → L(Rm) be a kernel, and assume that k(·, t)u is measurable for
all t ∈ ∆m and u ∈ Rm, and ‖k‖µG,1 <∞.

If Var[〈∆, k(G,G′)∆′〉Rm ] <∞, then

√
n
(

ŜKCEuq[k, g,D]− SKCE[k, g]
)

d−→ N (0, 4ζ1),

where
ζ1 := E[〈∆, k(G,G′)∆′〉Rm〈∆, k(G,G′′)∆′′〉Rm ]− SKCE2[k, g],

where G′ and G′′ are independent copies of G and ∆′ := δ(G′) and ∆′′ := δ(G′′).

Proof. The statement follows immediately from van der Vaart (Theorem 12.3 1998).

If model g is strongly calibrated, then ζ1 = 0, and hence ŜKCEuq is a so-called degenerate U-statistic
(see, e.g., Section 12.3 van der Vaart, 1998).
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Theorem G.2. Let k : ∆m ×∆m → L(Rm) be a kernel, and assume that k(·, t)u is measurable for
all t ∈ ∆m and u ∈ Rm, and ‖k‖µG,2 <∞.

If g is strongly calibrated, then

n ŜKCEuq[k, g,D]
d−→
∞∑
i=1

λi(Z
2
i − 1),

whereZi are independent standard normally distributed random variables and λi with
∑∞
i=1 λ

2
i <∞

are eigenvalues of the integral operator

Kf(ξ, y) :=

∫
〈ey − ξ, k(ξ, ξ′)(ey′ − ξ′)〉Rmf(ξ′, y′)µG×Y (d(ξ′, y′))

on the space L2(∆m × {1, . . . ,m}, µG×Y ).

Proof. From Lemma G.1 we know that

Var[〈∆, k(G,G′)∆′〉Rm ] <∞.
Moreover, since g is strongly calibrated, ∆ = 0 almost surely and by Theorem C.1 KCE[k, g] = 0.
Thus we obtain

E[〈∆, k(G,G′)∆′〉Rm〈∆, k(G,G′′)∆′′〉Rm ]− SKCE2[k, g] = 0.

The statement follows from Serfling (Theorem in Section 5.5.2 1980).

As discussed by Gretton et al. (2012) in the case of two-sample tests, a natural idea is to find a
threshold c such that P[n ŜKCEuq[k, g,D] > c |H0] ≤ α, where H0 is the null hypothesis that the
model is strongly calibrated. The desired quantile can be estimated by fitting Pearson curves to the
empirical distribution by moment matching (Gretton et al., 2012), or alternatively by bootstrapping
(Arcones and Giné, 1992), both computed and performed under the assumption that the model is
strongly calibrated.

If model g is strongly calibrated we know E[ŜKCEuq[k, g,D]] = 0. Moreover, it follows from
Hoeffding (p. 299 1948) that

E
[
ŜKCEuq

2
[k, g,D]

]
=

2

n(n− 1)
E
[
(〈eY − g(X), k(g(X), g(X ′))(eY ′ − g(X ′))〉Rm)

2
]
,

where (X ′, Y ′) is an independent copy of (X,Y ). By some tedious calculations we can retrieve
higher-order moments as well. If model g is strongly calibrated, we know from Serfling (1980,
Lemma B, Section 5.2.2) that for r ≥ 2

E
[
ŜKCEuq

r
[k, g,D]

]
= O(n−r)

as the number of samples n goes to infinity, provided that

E
[
|〈eY − g(X), k(g(X), g(X ′))(eY ′ − g(X ′))〉Rm |r

]
<∞.

Alternatively, as discussed by Arcones and Giné (Section 5 1992), we can estimate c by using
quantiles of the bootstrap statistic

T = 2n−1
∑

1≤i<j≤n

[
h((X∗,i, Y∗,i), (X∗,j , Y∗,j))− n−1

n∑
k=1

h((X∗,i, Y∗,i), (Xk, Yk))

−n−1
n∑
k=1

h((Xk, Yk), (X∗,j , Y∗,j)) + n−2
n∑

k,l=1

h((Xk, Yk), (Xl, Yl))

 ,
where

h((x, y), (x′, y′)) := 〈δ(x, y), k(g(x), g(x′))δ(x′, y′)〉Rm
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and (X∗,1, Y∗,1), . . . , (X∗,n, Y∗,n) are sampled with replacement from the data set D. Then asymp-
totically

P
[
n ŜKCEuq[k, g,D] > c |H0

]
≈ P[T > c | D].

For the linear estimator, the asymptotical behaviour follows from the central limit theorem (e.g.,
Theorem A in Section 1.9 Serfling, 1980).

Corollary G.1. Let k : ∆m ×∆m → L(Rm) be a kernel, and assume that k(·, t)u is measurable for
all t ∈ ∆m and u ∈ Rm, and ‖k‖µG,1 <∞.

If σ2 := Var[〈δ(X,Y ), k(g(X), g(X ′))δ(X ′, Y ′)〉Rm ] <∞, where (X ′, Y ′) is an independent copy
of (X,Y ), then √

bn/2c
(

ŜKCEul[k, g,D]− SKCE[k, g]
)

d−→ N (0, σ2).

As noted in the following statement, the variance σ2 is finite if t 7→ ‖k(t, t)‖ is L2-integrable with
respect to measure µG.

Corollary G.2. Let k : ∆m ×∆m → L(Rm) be a kernel, and assume that k(·, t)u is measurable for
all t ∈ ∆m and u ∈ Rm, and ‖k‖µG,2 <∞.

Then σ2 := Var[〈δ(X,Y ), k(G,G′)δ(X ′, Y ′)〉Rm ] <∞, where (X ′, Y ′) is an independent copy of
(X,Y ) with G′ = g(X ′), and√

bn/2c
(

ŜKCEul[k, g,D]− SKCE[k, g]
)

d−→ N (0, σ2).

Proof. The statement follows from Corollary G.1.

The weak convergence of ŜKCEul yields the following asymptotic test.

Corollary G.3. Let the assumptions of Corollary G.1 be satisfied.

A one-sided statistical test with test statistic ŜKCEul[k, g,D] and asymptotic significance level α has
the acceptance region √

bn/2c ŜKCEul[k, g,D] < z1−ασ̂,

where z1−α is the (1−α)-quantile of the standard normal distribution and σ̂ is a consistent estimator
of the standard deviation of 〈δ(X,Y ), k(g(X), g(X ′))δ(X ′, Y ′)〉Rm .

H Distribution-free bounds

First we prove a helpful bound.

Lemma H.1. Let k : ∆m × ∆m → L(Rm) be a kernel, and assume that Kp;q :=
sups,t∈∆m ‖k(s, t)‖p;q <∞ for some 1 ≤ p, q ≤ ∞. Then

sup
x,x′∈X ,y,y′∈{1,...,m}

|〈δ(x, y), k(g(x), g(x′))δ(x′, y′)〉Rm | ≤ 21+1/p−1/qKp;q =: Bp;q.

Proof. By Hölder’s inequality and the definition of the operator norm for all s, t ∈ ∆m and u, v ∈ Rm

|〈u, k(s, t)v〉Rm | ≤ ‖u‖q′‖k(s, t)v‖q ≤ ‖u‖q′‖v‖p‖k(s, t)‖p;q ≤ Kp;q‖u‖q′‖v‖p.

The result follows from the fact that maxs,t∈∆m ‖s − t‖p = 21/p and maxs,t∈∆m ‖s − t‖q′ =

21/q′ = 21−1/q .

Unfortunately, the tightness of the bound in Lemma H.1 depends on the choice of p and q, as the
following example shows.
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Example H.1
Let k = φIm, where φ : ∆m ×∆m → R is a scalar-valued kernel and Im ∈ Rm×m is the identity
matrix. Assume that Φ := sups,t∈∆m |φ(s, t)| <∞. One can show that for all s, t ∈ ∆m

‖k(s, t)‖p;q =

{
φ(s, t) if p ≤ q,
m1/q−1/pφ(s, t) if p > q,

which implies that

Kp;q =

{
Φ if p ≤ q,
m1/q−1/pΦ if p > q.

Thus the bound Bp;q in Lemma H.1 is

Bp;q =

{
21+1/p−1/qΦ if p ≤ q,
21+1/p−1/qm1/q−1/pΦ if p > q,

which attains its smallest value min1≤p,q≤∞Bp;q = 2Φ if and only if p = q or m = 2 and p > q.
Thus for any other choice of p and q Lemma H.1 provides a non-optimal bound.

Theorem H.1. Let k : ∆m ×∆m → L(Rm) be a kernel, and assume that k(·, t)u is measurable for
all t ∈ ∆m and u ∈ Rm, and Kp;q := sups,t∈∆m ‖k(s, t)‖p;q < ∞ for some 1 ≤ p, q ≤ ∞. Then
for all ε > 0

P
[∣∣∣K̂CE[k, g,D]−KCE[k, g]

∣∣∣ ≥ 2(Bp;q/n)
1/2

+ ε
]
≤ exp

(
− ε2n

2Bp;q

)
.

Proof. Let F be the unit ball in the RKHS H ⊂ (Rm)
∆m

corresponding to kernel k. We consider
the random variable

F :=
∣∣∣K̂CE[k, g,D]−KCE[k, g]

∣∣∣ .
The randomness of F is due to the randomness of the data points (Xi, Yi), and by Lemmas E.2
and F.1 we can rewrite F as

F = n−1

∣∣∣∣∣
∥∥∥∥∥
n∑
i=1

k(·, g(Xi))δ(Xi, Yi)

∥∥∥∥∥
H
− n ‖µg‖H

∣∣∣∣∣ =: f((X1, Y1), . . . , (Xn, Yn)),

where µg is the embedding defined in Lemma E.1. The triangle inequality implies that for all
zi = (xi, yi) ∈ X × {1, . . . ,m}

f(z1, . . . , zn) = n−1

∣∣∣∣∣
∥∥∥∥∥
n∑
i=1

k(·, g(xi))δ(xi, yi)

∥∥∥∥∥
H
− n‖µg‖H

∣∣∣∣∣
≤ n−1

∥∥∥∥∥
n∑
i=1

(k(·, g(xi))δ(xi, yi)− µg)
∥∥∥∥∥
H

=: h(z1, . . . , zn),

(H.1)

where h : (X × {1, . . . ,m})n → R is measurable and hence induces a random variable H :=
h((X1, Y1), . . . , (Xn, Yn)).

By the reproducing property and Lemma H.1, for all x, x′ ∈ X and y, y′ ∈ {1, . . . ,m} we have

‖k(·, g(x))δ(x, y)− k(·, g(x′))δ(x′, y′)‖2H = 〈δ(x, y), k(g(x), g(x))δ(x, y)〉Rm

− 〈δ(x, y), k(g(x), g(x′))δ(x′, y′)〉Rm

− 〈δ(x′, y′), k(g(x′), g(x))δ(x, y)〉Rm

+ 〈δ(x′, y′), k(g(x′), g(x′))δ(x′, y′)〉Rm

≤ 4Bp;q.

Thus for all i ∈ {1, . . . ,m} the triangle inequality implies

sup
z,z′,zj(j 6=i)

|h(z1, . . . , zi−1, z, zi+1, . . . , zn)− h(z1, . . . , zi−1, z
′, zi+1, . . . , zn)|

≤ sup
x,x,y,y′

n−1 ‖k(·, g(x))δ(x, y)− k(·, g(x′))δ(x′, y′)‖H ≤
2B

1/2
p;q

n
.
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Hence we can apply McDiarmid’s inequality to the random variable H , which yields for all ε > 0

P [H ≥ E[H] + ε] ≤ exp

(
− ε2n

2Bp;q

)
. (H.2)

In the final parts of the proof we bound the expectation E[H]. By Lemmas E.1 and F.1, we know that

H = h((X1, Y1), . . . , (Xn, Yn))

= sup
f∈F

n−1

∣∣∣∣∣
n∑
i=1

(
〈δ(Xi, Yi), f(g(Xi))〉Rm − E [〈δ(X,Y ), f(g(X))〉Rm ]

)∣∣∣∣∣
= sup
f∈F0

n−1

∣∣∣∣∣
n∑
i=1

f(Xi, Yi)− E[f(X,Y )]

∣∣∣∣∣ ,
where F0 := {f : X × {1, . . . ,m} → R, (x, y) 7→ 〈δ(x, y), f̃(g(x))〉Rm : f̃ ∈ F} is a class of
measurable functions. As Gretton et al. (2012), we make use of symmetrization ideas (van der Vaart
and Wellner, 1996, p. 108). From van der Vaart and Wellner (1996, Lemma 2.3.1) it follows that

E[H] = E

[
sup
f∈F0

n−1

∣∣∣∣∣
n∑
i=1

f(Xi, Yi)− E[f(X,Y )]

∣∣∣∣∣
]
≤ 2E

[
sup
f∈F0

∣∣∣∣∣n−1
n∑
i=1

εif(Xi, Yi)

∣∣∣∣∣
]
,

where ε1, . . . , εn are independent Rademacher random variables. Similar to Bartlett and Mendelson
(2002, Lemma 22), we obtain

E[H] ≤ 2n−1 E

[
sup
f∈F

∣∣∣∣∣
n∑
i=1

εi〈δ(Xi, Yi), f(g(Xi))〉Rm

∣∣∣∣∣
]

= 2n−1 E

[
sup
f∈F

∣∣∣∣∣
〈

n∑
i=1

εik(·, g(Xi))δ(Xi, Yi), f

〉
H

∣∣∣∣∣
]

= 2n−1 E

[∥∥∥∥∥
n∑
i=1

εik(·, g(Xi))δ(Xi, Yi)

∥∥∥∥∥
H

]

= 2n−1 E


 n∑
i,j=1

εiεj〈k(·, g(Xi))δ(Xi, Yi), k(·, g(Xj))δ(Xj , Yj)〉H

1/2
 .

By Jensen’s inequality we get

E[H] ≤ 2n−1

 n∑
i,j=1

E [εiεj〈k(·, g(Xi))δ(Xi, Yi), k(·, g(Xj))δ(Xj , Yj)〉H]

1/2

= 2n−1/2
(
E [〈k(·, g(X))δ(X,Y ), k(·, g(X))δ(X,Y )〉H]

)1/2

≤ 2(Bp;q/n)
1/2
.

(H.3)

All in all, from Eqs. (H.1) to (H.3) we obtain for all ε > 0

P
[∣∣∣K̂CE[k, g,D]−KCE[k, g]

∣∣∣ ≥ 2(Bp;q/n)
1/2

+ ε
]

= P[F ≥ 2(Bp;q/n)
1/2

+ ε]

≤ P[H ≥ 2(Bp;q/n)
1/2

+ ε]

≤ P[H ≥ E[H] + ε]

≤ exp

(
− ε2n

2Bp;q

)
,

which concludes our proof.
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If model g is calibrated in the strong sense, we can improve the bound.

Theorem H.2. Let k : ∆m ×∆m → L(Rm) be a kernel, and assume that k(·, t)u is measurable for
all t ∈ ∆m and u ∈ Rm, and Kp;q := sups,t∈∆m ‖k(s, t)‖p;q <∞ for some 1 ≤ p, q ≤ ∞. Define

B1 := n−1/2 [E [〈δ(X,Y ), k(g(X), g(X))δ(X,Y )〉Rm ]]
1/2

, and

B2 := (Bp;q/n)
1/2
.

Then B1 ≤ B2, and for all ε > 0 and i ∈ {1, 2}

P
[
K̂CE[k, g,D] ≥ Bi + ε

]
≤ exp

(
− ε2n

2Bp;q

)
,

if g is calibrated in the strong sense.

Proof. Let F be the unit ball in the RKHS H ⊂ (Rm)
∆m

corresponding to kernel k. Lemma H.1
implies

B1 = n−1/2 [E [〈δ(X,Y ), k(g(X), g(X))δ(X,Y )〉Rm ]]
1/2

≤ n−1/2 [E[Bp;q]]
1/2

= (Bp;q/n)
1/2

= B2.
(H.4)

Let H be defined as in the proof of Theorem H.1. Since g is strongly calibrated, it follows from
Theorem C.1 and Lemma E.2 that µg = 0, and thus by Lemma F.1

H = n−1

∥∥∥∥∥
n∑
i=1

k(·, g(xi))δ(xi, yi)

∥∥∥∥∥
H

= K̂CE[k, g,D].

Thus Eq. (H.2) implies

P
[
K̂CE[k, g,D] ≥ E[K̂CE[k, g,D] + ε

]
≤ exp

(
− ε2n

2Bp;q

)
. (H.5)

Next we bound E[K̂CE[k, g,D]]. From Lemma F.1 we get

E[K̂CE[k, g,D]] =
1

n
E


 n∑
i,j=1

〈δ(Xi, Yi), k(g(Xi), g(Xj))δ(Xj , Yj)〉Rm

1/2
 ,

and hence by Jensen’s inequality we obtain

E[K̂CE[k, g,D]] ≤ 1

n

E

 n∑
i,j=1

〈δ(Xi, Yi), k(g(Xi), g(Xj))δ(Xj , Yj)〉Rm

1/2

=
1

n

(
nE [〈δ(X,Y ), k(g(X), g(X))δ(X,Y )〉Rm ]

+ n(n− 1)E [〈δ(X,Y ), k(g(X), g(X ′))δ(X ′, Y ′)〉Rm ]

)1/2

,

where (X ′, Y ′) denotes an independent copy of (X,Y ). From Lemma E.2 it follows that

E[K̂CE[k, g,D] ≤
(

1

n
E [〈δ(X,Y ), k(g(X), g(X))δ(X,Y )〉Rm ] +

(
1− 1

n

)
SKCE[k, g]

)1/2

.

If model g is calibrated in the strong sense, we know from Theorem C.1 that SKCE[k, g] = 0. Thus
we obtain

E[K̂CE[k, g,D]] ≤ B1. (H.6)
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All in all, from Eqs. (H.4) to (H.6) it follows that for all ε > 0 and i ∈ {1, 2}
P
[
K̂CE[k, g,D] ≥ Bi + ε

]
≤ P

[
K̂CE[k, g,D] ≥ B1 + ε

]
≤ P

[
K̂CE[k, g,D] ≥ E[K̂CE[k, g,D] + ε

]
≤ exp

(
−−ε

2n

2Bp;q

)
,

if g is calibrated in the strong sense.

Thus we obtain the following distribution-free hypothesis test.

Corollary H.1. Let the assumptions of Theorem H.2 be satisfied.

A statistical test with test statistic K̂CE[k, g,D] and significance level α for the null hypothesis of
model g being calibrated in the strong sense has the acceptance region

K̂CE[k, g,D] < (Bp;q/n)
1/2

(1 +
√
−2 logα).

A distribution-free bound for the deviation of the unbiased estimator can be obtained from the theory
of U-statistics.

Theorem H.3. Let k : ∆m ×∆m → L(Rm) be a kernel, and assume that k(·, t)u is measurable for
all t ∈ ∆m and u ∈ Rm, and Kp;q := sups,t∈∆m ‖k(s, t)‖p;q for some 1 ≤ p, q ≤ ∞. Then for all
t > 0

P
[
ŜKCEuq[k, g,D]− SKCE[k, g] ≥ t

]
≤ exp

(
−bn/2ct

2

2B2
p;q

)
.

The same bound holds for P
[
ŜKCEuq[k, g,D]− SKCE[k, g] ≤ −t

]
.

Proof. By Lemma F.2, E[ŜKCEuq[k, g,D]] = SKCE[k, g]. Moreover, by Lemma H.1 we know that
sup

x,x′∈X ,y,y′∈{1,...,m}
|〈δ(x, y), k(g(x), g(x′))δ(x′, y′)〉Rm | ≤ Bp;q.

Thus the result follows from the bound on U-statistics by Hoeffding (1963, p. 25).

We can derive a hypothesis test using the unbiased estimator.

Corollary H.2. Let the assumptions of Theorem H.3 be satisfied.

A one-sided statistical test with test statistic ŜKCEuq[k, g,D] and significance level α for the null
hypothesis of model g being calibrated in the strong sense has the acceptance region

ŜKCEuq[k, g,D] <
Bp;q√
bn/2c

√
−2 logα.

Analogously we can obtain a bound for the linear estimator.

Theorem H.4. Let k : ∆m ×∆m → L(Rm) be a kernel, and assume that k(·, t)u is measurable for
all t ∈ ∆m and u ∈ Rm, and Kp;q := sups,t∈∆m ‖k(s, t)‖p;q for some 1 ≤ p, q ≤ ∞. Then for all
t > 0

P
[
ŜKCEul[k, g,D]− SKCE[k, g] ≥ t

]
≤ exp

(
−bn/2ct

2

2B2
p;q

)
.

The same bound holds for P
[
ŜKCEul[k, g,D]− SKCE[k, g] ≤ −t

]
.

Proof. By Lemma F.3, E[ŜKCEul[k, g,D]] = SKCE[k, g]. Moreover, by Lemma H.1 we know that
sup

x,x′∈X ,y,y′∈{1,...,m}
|〈δ(x, y), k(g(x), g(x′))δ(x′, y′)〉Rm | ≤ Bp;q.

Thus by Hoeffding’s inequality (Hoeffding, 1963, Theorem 2) for all t > 0

P
[
ŜKCEul[k, g,D]− SKCE[k, g] ≥ t

]
≤ exp

(
−bn/2ct

2

2B2
p;q

)
.
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Obviously this results yields another distribution-free hypothesis test.

Corollary H.3. Let the assumptions of Theorem H.4 be satisfied.

A one-sided statistical test with test statistic ŜKCEul[k, g,D] and significance level α for the null
hypothesis of model g being calibrated in the strong sense has the acceptance region

ŜKCEul[k, g,D] <
Bp;q√
bn/2c

√
−2 logα.

I Comparisons

I.1 Expected calibration error and maximum calibration error

For certain spaces of bounded functions the calibration error CE turns out to be a form of the ECE.
In particular, the ECE with respect to the cityblock distance, the total variation distance, and the
squared Euclidean distance are special cases of CE. Choosing p = 1 in the following statement
corresponds to the special case of the MCE.

Lemma I.1 (ECE and MCE as special cases). Let 1 ≤ p ≤ ∞ with Hölder conjugate p′. If
F = Kp(∆m, µG;Rm), then CE[F , g] = ‖δ‖µG,p′ .

Proof. Note that F is well defined since F ⊂ L1(∆m, µG;Rm).

The statement follows from the extremal case of Hölder’s inequality. More explicitly, let ν denote the
counting measure on {1, . . . ,m}. Since both µG and ν are σ-finite measures, the product measure
µG ⊗ ν on the product space B := ∆m × {1, . . . ,m} is uniquely defined and σ-finite. Define
δ̃(t, k) := δk(t) for all (t, k) ∈ B. Then we can rewrite

CE[F , g] = sup
f∈Kp(∆m,µG;Rm)

∫
∆m

〈δ(x), f(x)〉Rm µG(dx)

= sup
f∈Kp(B,µG⊗ν;Rm)

∫
B

|δ̃(x, k)f(x, k)| (µG × ν)(d(x, k))

= ‖δ̃‖µG⊗ν,p′ = ‖δ‖µG,p′ ,

to make the reasoning more apparent. Since µG⊗ν is σ-finite the statement holds even for p = 1.

I.2 Maximum mean calibration error

The so-called “correctness score” (Kumar et al. (2018)) c(x, y) of an input x and a class y is defined
as c(x, y) = 1{arg maxy′ gy′ (x)}(y). It is 1 if class y is equal to the class that is most likely for input x
according to model g, and 0 otherwise. Let k : [0, 1]× [0, 1]→ R be a scalar-valued kernel. Then the
maximum mean calibration error MMCE[k, g] of a model g with respect to kernel k is defined6 as

MMCE[k, g]

=

(
E[(c(X,Y )− gmax(X))(c(X ′, Y ′)− gmax(X ′))k(gmax(X), gmax(X ′))]

)1/2

,

where (X ′, Y ′) is an independent copy of (X,Y ).

Example I.1 shows that the KCE allows exactly the same analysis of the common notion of calibration
as the MMCE proposed by Kumar et al. (2018) by applying it to a model that is reduced to the most
confident predictions.

Example I.1 (MMCE as special case)
Reduce model g to its most confident predictions by defining a new model g̃ with g̃(x) :=
(gmax(x), 1 − gmax(x)). The predictions g̃(x) of this new model can be viewed as a model of

6For illustrative purposes we present a variation of the original definition of the MMCE by Kumar et al.
(2018).
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the conditional probabilities (P[Ỹ = 1 |X = x],P[Ỹ = 2 |X = x]) in a classification problem with
inputs X and classes Ỹ := 2− c(X,Y ).7

Let k : [0, 1]× [0, 1]→ R be a scalar-valued kernel. Define a matrix-valued function k̃ : ∆2 ×∆2 →
R2×2 by

k̃((p1, p2), (q1, q2)) =
k(p1, q1)

2
I2.

Then by Caponnetto et al. (2008, Example 1 and Theorem 14) k̃ is a matrix-valued kernel and,
if it is continuous, it is universal if and only if k is universal. By construction eỸ − g̃(X) =
(c(X,Y )− gmax(X))(1,−1), and hence

SKCE[k̃, g̃] = E[(eỸ − g̃(X))
ᵀ
k̃(g̃(X), g̃(X ′))(eỸ − g̃(X ′))]

= E[(c(X,Y )− gmax(X))(c(X ′, Y ′)− gmax(X ′))k(gmax(X), gmax(X ′))]

= MMCE2[k, g],

where (X ′, Ỹ ′) and (X ′, Y ′) are independent copies of (X, Ỹ ) and (X,Y ), respectively.

7In the words of Vaicenavicius et al. (2019), g̃ is induced by the maximum calibration lens.
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J Experiments

The Julia implementation for all experiments is available online at https://github.com/
devmotion/CalibrationPaper. The code is written and documented with the literate program-
ming tool Weave.jl Pastell (2017) and exported to HTML files that include results and figures.

J.1 Calibration errors

In our experiments we evaluate the proposed estimators of the SKCE and compare them with two
estimators of the ECE.

J.1.1 Expected calibration error

As commonly done (Bröcker and Smith, 2007; Guo et al., 2017; Vaicenavicius et al., 2019), we study
the ECE with respect to the total variation distance.

The standard histogram-regression estimator of the ECE is based on a partitioning of the probability
simplex (Guo et al., 2017; Vaicenavicius et al., 2019). In our experiments we use two different
partitioning schemes. The first scheme is the commonly used partitioning into bins of uniform size,
based on splitting the predictions of each class into 10 bins. The other partitioning is data-dependent:
the data set is split iteratively along the median of the class predictions with the highest variance as
long as the number of samples in a bin is at least 10.

J.1.2 Kernel calibration error

We consider the matrix-valued kernel k(x, y) = exp (−‖x− y‖/ν)Im with kernel bandwidth ν > 0.
Analogously to the ECE, we take the total variation distance as distance measure. Moreover, we
choose the bandwidth adaptively with the so-called median heuristic. The median heuristic is a
common heuristic that proposes to set the bandwidth to the median of the pairwise distances of
samples in a, not necessarily separate, validation data set (see, e.g., Gretton et al., 2012).

J.2 Generative models

Since the considered calibration errors depend only on the predictions and labels, we specify genera-
tive models of labeled predictions (g(X), Y ) without considering X . Instead we only specify the
distribution of the predictions g(X) and the conditional distribution of Y given g(X) = g(x). This
setup allows us to design calibrated and uncalibrated models in a straightforward way, which enables
clean numerical evaluations with known calibration errors.

We study the generative model

g(X) ∼ Dir(α),

Z ∼ Ber(π),

Y |Z = 1, g(X) = γ ∼ Cat(β),

Y |Z = 0, g(X) = γ ∼ Cat(γ),

with parameters α ∈ Rm>0, β ∈ ∆m, and π ∈ [0, 1]. The model is calibrated if and only if π = 0,
since for all labels y ∈ {1, . . . ,m} we obtain

P[Y = y | g(X)] = πβy + (1− π)gy(X),

and hence ∆ = π(β − g(X)) = 0 almost surely if and only if π = 0.

By setting α = (1, . . . , 1) we can model uniformly distributed predictions, and by decreasing the
magnitude of α we can push the predictions towards the edges of the probability simplex, mimicking
the predictions of a trained model (cf., e.g., Vaicenavicius et al., 2019).
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J.2.1 Theoretical expected calibration error

For the considered model, the ECE with respect to the total variation distance is

ECE[‖.‖TV, g] = E[‖∆‖TV] = π E[‖β − g(X)‖TV] = π/2

m∑
i=1

E[|βi − gi(X)|]

=
π

2

m∑
i=1

((
αi
α0
− βi

)(
1− 2B(βi;αi, α0 − αi)

B(αi, α0 − αi)

)
+

2βαi
i (1− βi)α0−αi

α0B(αi, α0 − αi)

)
,

where α0 :=
∑m
i=1 αi and B(x; a, b) denotes the incomplete Beta function

∫ x
0
ta−1(1− t)b−1

dt.
By exploiting

∑m
i=1 βi = 1, we get

ECE[‖.‖TV, g] =
π

α0

m∑
i=1

(α0βi − αi)B(βi;αi, α0 − αi) + βαi
i (1− βi)α0−αi

B(αi, α0 − αi)
.

Let I(x; a, b) := B(x; a, b)/B(a, b) denote the regularized incomplete Beta function. Due to the
identity xa(1− x)b/B(a, b) = a(I(x; a, b)− I(x; a+ 1, b), we obtain

ECE[‖.‖TV, g] = π

m∑
i=1

(
βiI(βi;αi, α0 − αi)−

αi
α0
I(βi;αi + 1, α0 − αi)

)
.

If α = (a, . . . , a) for some a > 0, then

ECE[‖.‖TV, g] = π

m∑
i=1

(
βiI(βi; a, (m− 1)a)−m−1I(βi; a+ 1, (m− 1)a)

)
.

If β = ej for some j ∈ {1, . . . ,m} we get

ECE[‖.‖TV, g] = π
(
I(1; a, (m− 1)a)−m−1I(1; a+ 1, (m− 1)a)

)
= π(1−m−1) =

π(m− 1)

m
,

whereas if β = (1/m, . . . , 1/m) we obtain

ECE[‖.‖TV, g] = π
(
I(m−1; a, (m− 1)a)− I(m−1; a+ 1, (m− 1)a)

)
= π

m−a(1−m−1)
(m−1)a

aB(a, (m− 1)a)
=

π

aB(a, (m− 1)a)

(
(m− 1)

m−1

mm

)a
.

We see that, as the number of classes goes to infinity, the ECE with respect to the total variation
distance tends to π and π exp (−a)aa−1/Γ(a), respectively.

J.2.2 Mean total variation distance

For the considered generative models, we can compute the mean total variation distance E[‖X −
X ′‖TV], which does not depend on the number of available samples (but, of course, is usually not
available). If X and X ′ are i.i.d. according to Dir(α) with parameter α ∈ Rm>0, then their mean total
variation distance is

E[‖X −X ′‖TV] = 1/2

m∑
i=1

E[|Xi −X ′i|]

=

m∑
i=1

E[Xi −X ′i |Xi > X ′i]

=
2B(α0, α0)

α0

m∑
i=1

[B(αi, αi)B(α0 − αi, α0 − αi)]−1
,

where α0 :=
∑m
i=1 αi. We conduct additional experiments in which we set the kernel bandwidth to

the mean total variation distance.
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J.2.3 Distribution of estimates: Additional figures
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Figure 3: Distribution of ÊCE with bins of uniform size, evaluated on 104 data sets of 250 labeled
predictions that are randomly sampled from generative models with α = (1, . . . , 1) and β =
(1/m, . . . , 1/m).
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Figure 4: Distribution of ÊCE with bins of uniform size, evaluated on 104 data sets of 250 labeled
predictions that are randomly sampled from generative models with α = (0.1, . . . , 0.1) and β =
(1/m, . . . , 1/m).
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Figure 5: Distribution of ÊCE with bins of uniform size, evaluated on 104 data sets of 250 labeled
predictions that are randomly sampled from generative models with α = (1, . . . , 1) and β =
(1, 0, . . . , 0).
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Figure 6: Distribution of ÊCE with bins of uniform size, evaluated on 104 data sets of 250 labeled
predictions that are randomly sampled from generative models with α = (0.1, . . . , 0.1) and β =
(1, 0, . . . , 0).
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Figure 7: Distribution of ÊCE with data-dependent bins, evaluated on 104 data sets of 250 labeled
predictions that are randomly sampled from generative models with α = (1, . . . , 1) and β =
(1/m, . . . , 1/m).
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Figure 8: Distribution of ÊCE with data-dependent bins, evaluated on 104 data sets of 250 labeled
predictions that are randomly sampled from generative models with α = (0.1, . . . , 0.1) and β =
(1/m, . . . , 1/m).
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Figure 9: Distribution of ÊCE with data-dependent bins, evaluated on 104 data sets of 250 labeled
predictions that are randomly sampled from generative models with α = (1, . . . , 1) and β =
(1, 0, . . . , 0).
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Figure 10: Distribution of ÊCE with data-dependent bins, evaluated on 104 data sets of 250 labeled
predictions that are randomly sampled from generative models with α = (0.1, . . . , 0.1) and β =
(1, 0, . . . , 0).
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Figure 11: Distribution of ŜKCEb with the median heuristic, evaluated on 104 data sets of 250
labeled predictions that are randomly sampled from generative models with α = (1, . . . , 1) and
β = (1/m, . . . , 1/m).
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Figure 12: Distribution of ŜKCEb with the median heuristic, evaluated on 104 data sets of 250
labeled predictions that are randomly sampled from generative models with α = (0.1, . . . , 0.1) and
β = (1/m, . . . , 1/m).
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Figure 13: Distribution of ŜKCEb with the median heuristic, evaluated on 104 data sets of 250
labeled predictions that are randomly sampled from generative models with α = (1, . . . , 1) and
β = (1, 0, . . . , 0).
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Figure 14: Distribution of ŜKCEb with the median heuristic, evaluated on 104 data sets of 250
labeled predictions that are randomly sampled from generative models with α = (0.1, . . . , 0.1) and
β = (1, 0, . . . , 0).
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Figure 15: Distribution of ŜKCEb with the mean total variation distance, evaluated on 104 data sets
of 250 labeled predictions that are randomly sampled from generative models with α = (1, . . . , 1)
and β = (1/m, . . . , 1/m).
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Figure 16: Distribution of ŜKCEb with the mean total variation distance, evaluated on 104 data sets
of 250 labeled predictions that are randomly sampled from generative models with α = (0.1, . . . , 0.1)
and β = (1/m, . . . , 1/m).
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Figure 17: Distribution of ŜKCEb with the mean total variation distance, evaluated on 104 data sets
of 250 labeled predictions that are randomly sampled from generative models with α = (1, . . . , 1)
and β = (1, 0, . . . , 0).
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Figure 18: Distribution of ŜKCEb with the mean total variation distance, evaluated on 104 data sets
of 250 labeled predictions that are randomly sampled from generative models with α = (0.1, . . . , 0.1)
and β = (1, 0, . . . , 0).
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Figure 19: Distribution of ŜKCEuq with the median heuristic, evaluated on 104 data sets of 250
labeled predictions that are randomly sampled from generative models with α = (1, . . . , 1) and
β = (1/m, . . . , 1/m).
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Figure 20: Distribution of ŜKCEuq with the median heuristic, evaluated on 104 data sets of 250
labeled predictions that are randomly sampled from generative models with α = (0.1, . . . , 0.1) and
β = (1/m, . . . , 1/m).
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Figure 21: Distribution of ŜKCEuq with the median heuristic, evaluated on 104 data sets of 250
labeled predictions that are randomly sampled from generative models with α = (1, . . . , 1) and
β = (1, 0, . . . , 0).
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Figure 22: Distribution of ŜKCEuq with the median heuristic, evaluated on 104 data sets of 250
labeled predictions that are randomly sampled from generative models with α = (0.1, . . . , 0.1) and
β = (1, 0, . . . , 0).
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Figure 23: Distribution of ŜKCEuq with the mean total variation distance, evaluated on 104 data sets
of 250 labeled predictions that are randomly sampled from generative models with α = (1, . . . , 1)
and β = (1/m, . . . , 1/m).
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Figure 24: Distribution of ŜKCEuq with the mean total variation distance, evaluated on 104 data sets
of 250 labeled predictions that are randomly sampled from generative models with α = (0.1, . . . , 0.1)
and β = (1/m, . . . , 1/m).
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Figure 25: Distribution of ŜKCEuq with the mean total variation distance, evaluated on 104 data sets
of 250 labeled predictions that are randomly sampled from generative models with α = (1, . . . , 1)
and β = (1, 0, . . . , 0).
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Figure 26: Distribution of ŜKCEuq with the mean total variation distance, evaluated on 104 data sets
of 250 labeled predictions that are randomly sampled from generative models with α = (0.1, . . . , 0.1)
and β = (1, 0, . . . , 0).

41



−5 0 5
·10−20

1,000

2,000

m
=

2

π = 0.0

−5 0 5
·10−20

1,000

2,000

π = 0.25

−0.1 0 0.1

0

1,000

2,000

3,000

π = 0.5

−0.1 0 0.1

0

1,000

2,000

3,000

π = 0.75

−0.1 0 0.1

0

1,000

2,000

3,000

π = 1.0

−4−2 0 2 4
·10−20

1,000

2,000

m
=

1
0

−4−2 0 2 4
·10−20

1,000

2,000

0 5
·10−20

1,000

2,000

3,000

−5 0 5
·10−20

1,000

2,000

3,000

−5 0 5
·10−20

1,000

2,000

3,000

0 1 2
·10−20

1,000

2,000

3,000

m
=

1
0
0

0 1 2
·10−20

1,000

2,000

3,000

0 1 2
·10−20

1,000

2,000

3,000

0 1 2
·10−20

1,000

2,000

3,000

0 1 2
·10−20

1,000

2,000

3,000

0 0.5 1
·10−20

5,000

m
=

1
0
0
0

0 0.5 1
·10−20

5,000

0 0.5 1
·10−20

5,000

0 0.5 1
·10−20

5,000

0 0.5 1
·10−20

5,000

calibration error estimate

#
ru

ns

Figure 27: Distribution of ŜKCEul with the median heuristic, evaluated on 104 data sets of 250
labeled predictions that are randomly sampled from generative models with α = (1, . . . , 1) and
β = (1/m, . . . , 1/m).
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Figure 28: Distribution of ŜKCEul with the median heuristic, evaluated on 104 data sets of 250
labeled predictions that are randomly sampled from generative models with α = (0.1, . . . , 0.1) and
β = (1/m, . . . , 1/m).
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Figure 29: Distribution of ŜKCEul with the median heuristic, evaluated on 104 data sets of 250
labeled predictions that are randomly sampled from generative models with α = (1, . . . , 1) and
β = (1, 0, . . . , 0).
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Figure 30: Distribution of ŜKCEul with the median heuristic, evaluated on 104 data sets of 250
labeled predictions that are randomly sampled from generative models with α = (0.1, . . . , 0.1) and
β = (1, 0, . . . , 0).
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Figure 31: Distribution of ŜKCEul with the mean total variation distance, evaluated on 104 data sets
of 250 labeled predictions that are randomly sampled from generative models with α = (1, . . . , 1)
and β = (1/m, . . . , 1/m).
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Figure 32: Distribution of ŜKCEul with the mean total variation distance, evaluated on 104 data sets
of 250 labeled predictions that are randomly sampled from generative models with α = (0.1, . . . , 0.1)
and β = (1/m, . . . , 1/m).
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Figure 33: Distribution of ŜKCEul with the mean total variation distance, evaluated on 104 data sets
of 250 labeled predictions that are randomly sampled from generative models with α = (1, . . . , 1)
and β = (1, 0, . . . , 0).
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Figure 34: Distribution of ŜKCEul with the mean total variation distance, evaluated on 104 data sets
of 250 labeled predictions that are randomly sampled from generative models with α = (0.1, . . . , 0.1)
and β = (1, 0, . . . , 0).
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J.3 Modern neural networks

In the main experiments of our paper discussed in Appendix J.2 we focus on an experimental
confirmation of the derived theoretical properties of the kernel-based estimators and their comparison
with the commonly used ECE. In contrast to Guo et al. (2017), neither the study of the calibration of
different neural network architectures nor the re-calibration of uncalibrated models are the main goal
of our paper. The calibration measures that we consider only depend on the predictions and the true
labels, not on how these predictions are computed. We therefore believe that directly specifying the
predictions in a “controlled way” results in a cleaner and more informative numerical evaluation.

That being said, we recognize that this approach might result in an unnecessary disconnect between
the results of the paper and a practical use case. We therefore conduct additional evaluations with
different modern neural networks as well. We consider pretrained ResNet, DenseNet, VGGNet,
GoogLeNet, MobileNet, and Inception neural networks Phan (2019) for the classification of the
CIFAR-10 image data set Krizhevsky (2009). The CIFAR-10 data set is a labeled data set of 32× 32
colour images and consists of 50000 training and 10000 test images in 10 classes. The calibration of
the neural network models is estimated from their predictions on the CIFAR-10 test data set. We use
the same calibration error estimators and p-value approximations as for the generative models above;
however, the minimum number of samples per bin in the data-dependent binning scheme of the ECE
estimator is increased to 100 to account for the increased number of data samples.
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Figure 35: Calibration error estimates of modern neural networks for classification of the CIFAR-10
image data set.

The computed calibration error estimates are shown in Fig. 35. As we argue in our paper, the raw
calibration estimates are not interpretable and can be misleading. The results in Fig. 35 endorse this
opinion. The estimators rank the models in different order (also the two estimators of the ECE), and
it is completely unclear if the observed calibration error estimates (in the order of 10−2 and 10−4!)
actually indicate that the neural network models are not calibrated.

Hence to obtain an interpretable measure, we consider different bounds and approximations of the
p-value for the calibration error estimators, assuming the models are calibrated. More concretely, we
estimate the p-value by consistency resampling of the standard (Cuniform) and the data-dependent
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Figure 36: Bounds and approximations of the p-value of modern neural networks for classification
of the CIFAR-10 image data set for different calibration error estimators, assuming the models are
calibrated.

(Cdata−dependent) estimator of the ECE, evaluate the distribution-free bounds of the p-value for the
estimators ŜKCEb (Db), ŜKCEuq (Duq), and ŜKCEul (Dl) of the SKCE, and approximate the
p-value using the asymptotic distribution of the estimators ŜKCEuq (Auq) and ŜKCEul (Al). The
results are shown in Fig. 36.

The approximations obtained by consistency resampling are almost always zero, apart from
GoogLeNet for the ECE estimator with partitions of uniform size. However, since our controlled
experiments with the generative models showed that consistency resampling might underestimate the
p-value of calibrated models on average, these approximations could be misleading. On the contrary,
the bounds and approximations of the p-value for the estimators of the SKCE are theoretically
well-founded. In our experiments with the generative models, the asymptotic distribution of the
estimator ŜKCEuq seemed to allow to approximate the p-value quite accurately on average and
yielded very powerful tests. For all studied neural network models these p-value approximations
are zero, and hence for all models we would always reject the null hypothesis of calibration. The
p-value approximations based on the asymptotic distribution of the estimator ŜKCEul vary between
around 0.18 for the ResNet18 and 0.91 for the GoogLeNet model. The higher p-value approximations
correspond to the increased empirical test errors with the uncalibrated generative models compared
to the tests based on the asymptotic distribution of the estimator ŜKCEuq. Most distribution-free
bounds of the p-value are between 0.99 and 1, indicating again that these bounds are quite loose.

All in all, the evaluations of the modern neural networks seem to match the theoretical expectations
and are consistent with the results we obtained in the experiments with the generative models.
Moreover, the p-value approximations of zero are consistent with Guo et al. (2017)’s finding that
modern neural networks are often not calibrated.

J.4 Computational time

The computational time, although dependent on our Julia implementation and the hardware used,
might provide some insights to the interested reader in addition to the algorithmic complexity.
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However, in our opinion, a fair comparison of the proposed calibration error estimators should take
into account the error of the calibration error estimation, similar to work precision diagrams for
numerical differential equation solvers.

A simple comparison of the computational time for the calibration error estimators used in the
experiments with the generative models in Appendix J.2 on our computer (3.6 GHz) shows the
expected scaling of the computational time with increasing number of samples. As Fig. 37 shows,
even for 1000 samples and 1000 classes the estimators ŜKCEb and ŜKCEuq with the median
heuristic can be evaluated in around 0.1 seconds. Moreover, the simple benchmark indicates that the
evaluation of the estimator of the ECE with data-dependent bins is much slower than of the one with
partitions of uniform size.

100 101 102 103
10−8

10−5

10−2

m = 2

100 101 102 103
10−8

10−5

10−2

m = 10

100 101 102 103
10−8

10−5

10−2

m = 100

100 101 102 103
10−8

10−4

100
m = 1000

number of samples
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Figure 37: Computational time for the evaluation of calibration error estimators on data sets with
different number of classes versus number of data samples.
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