
Fast and Accurate Least-Mean-Squares Solvers

Alaa Maalouf ∗
Alaamalouf12@gmail.com

Ibrahim Jubran∗
ibrahim.jub@gmail.com

Dan Feldman
dannyf.post@gmail.com

The Robotics and Big Data Lab,
Department of Computer Science,

University of Haifa,
Haifa, Israel

Abstract

Least-mean squares (LMS) solvers such as Linear / Ridge / Lasso-Regression,
SVD and Elastic-Net not only solve fundamental machine learning problems, but
are also the building blocks in a variety of other methods, such as decision trees
and matrix factorizations.
We suggest an algorithm that gets a finite set of n d-dimensional real vectors and
returns a weighted subset of d + 1 vectors whose sum is exactly the same. The
proof in Caratheodory’s Theorem (1907) computes such a subset inO(n2d2) time
and thus not used in practice. Our algorithm computes this subset in O(nd) time,
using O(log n) calls to Caratheodory’s construction on small but "smart" subsets.
This is based on a novel paradigm of fusion between different data summarization
techniques, known as sketches and coresets.
As an example application, we show how it can be used to boost the performance
of existing LMS solvers, such as those in scikit-learn library, up to x100. General-
ization for streaming and distributed (big) data is trivial. Extensive experimental
results and complete open source code are also provided.

1 Introduction and Motivation

Least-Mean-Squares (LMS) solvers are the family of fundamental optimization problems in machine
learning and statistics that include linear regression, Principle Component Analysis (PCA), Singular
Value Decomposition (SVD), Lasso and Ridge regression, Elastic net, and many more Golub und
Reinsch (1971); Jolliffe (2011); Hoerl und Kennard (1970); Seber und Lee (2012); Zou und Hastie
(2005); Tibshirani (1996); Safavian und Landgrebe (1991). See formal definition below. First closed
form solutions for problems such as linear regression were published by e.g. Pearson Pearson (1900)
around 1900 but were probably known before. Nevertheless, today they are still used extensively
as building blocks in both academy and industry for normalization Liang u. a. (2013); Kang u. a.
(2011); Afrabandpey u. a. (2016), spectral clustering Peng u. a. (2015), graph theory Zhang und
Rohe (2018), prediction Copas (1983); Porco u. a. (2015), dimensionality reduction Laparra u. a.
(2015), feature selection Gallagher u. a. (2017) and many more; see more examples in Golub und
Van Loan (2012).

Least-Mean-Squares solver in this paper is an optimization problem that gets as input an n× d real
matrix A, and another n-dimensional real vector b (possibly the zero vector). It aims to minimize
the sum of squared distances from the rows (points) of A to some hyperplane that is represented by
its normal or vector of d coefficients x, that is constrained to be in a given set X ⊆ Rd:

min
x∈X

f(‖Ax− b‖2) + g(x).

∗These authors contributed equally to this work.

ar
X

iv
:1

90
6.

04
70

5v
1

 [
cs

.L
G

]
 1

1
Ju

n
20

19

Here, g is called a regularization term. For example: in linear regression X = Rd, f(x) = x2 and
g(x) = 0 for every x ∈ X . In Lasso f(y) = y2 and g(y) = α · ‖x‖1 for every y ∈ Rd and α > 0.
Such LMS solvers can be computed via the covariance matrix ATA. For example, the solution to
linear regression of minimizing ‖Ax− b‖2 is (ATA)−1AT b.

1.1 Related work

While there are many LMS solvers and implementations, there is always a trade-off between their
accuracy and running time; see comparison table in Bauckhage (2015) with references therein. The
reason is related to the fact that computing the covariance matrix ofA can be done essentially in two
ways: (i) summing the d × d outer product aiaTi of the ith row aTi of A over every i, 1 ≤ i ≤ n.
This is due to the fact that ATA =

∑n
i=1 aia

T
i , or (ii) factorization of A, e.g. using SVD or the QR

decomposition.

Numerical issues. Method (i) is easy to implement for streaming rows of A by maintaining
only d2 entries of the covariance matrix for the n vectors seen so far, or maintaining its inverse
(ATA)−1 as explained e.g. in Golub und Van Loan (2012). This takes O(d2) for each vector
insertion. However, every such addition may introduce another numerical error which accumulates
over time. This error increases significantly when running the algorithms using 32 bit floating point
representation, which is common for GPU computations. This solution is similar to maintaining the
set of d rows of the matrix DV T , where A = UDV T is the SVD of A, which is not a subset of the
original input matrix A but has the same covariance matrix ATA = V D2V . A common problem
is that to compute (ATA)−1 the matrix ATA must be invertible. This may not be the case due to
numerical issues. In algorithms such as Lasso, the input cannot be a covariance matrix, but can be
its Cholesky decomposition Bjorck (1967) V D. However, Cholesky decomposition can be applied
only on positive-definite matrices, which is not the case even for small numerical errors that are
added to ATA. See Section 4 for more details and empirical evidence.

Running-time issues. Method (ii) above utilizes factorizations such as SVD, i.e., A = UDV T to
compute the covariance matrix via ATA = V D2V T or the QR decomposition A = QR to compute
ATA = RTQTQRT = RTR. This approach is known to be much more stable. However, it is
much more time consuming: while in theory the running time is O(nd2) as in the first method, the
constants that are hidden in the O(·) notation are significantly larger. Moreover, unlike Method (i),
it is impossible to compute such factorizations exactly for streaming data Clarkson und Woodruff
(2009).

Caratheodory’s Theorem Carathéodory (1907) states that every point contained in the convex
hull of n points in Rd can be represented as a convex combination of a subset of at most d + 1
points, which we call the Caratheodory set; see Section 2 and Fig. 1. This implies that we can
maintain a weighted (scaled) set of d2 + 1 points (rows) whose covariance matrix is the same as A,
since (1/n)

∑
i aia

T
i is the mean of n matrices and thus in the convex hull of their corresponding

points in Rd2 ; see Algorithm 3. The fact that we maintain such a small sized subset of points instead
of updating linear combinations of all the n points seen so far, significantly reduces the numerical
errors as shown in Fig. 10b–10a. Unfortunately, computing this set from Caratheodory’s Theorem
takes O(n2d2) or O(nd3) time via O(n) calls to an LMS solver. This fact makes it non-practical to
use in an LMS solver, as we aim to do in this paper, and may explain the lack of source code for this
algorithm on the web.

Approximations via Coresets and Sketches. In the recent decades numerous approximation and
data summarization algorithms were suggested to approximate the covariance matrix or its singular
values. This is by computing a small matrix S whose covariance STS approximates, in some sense,
the covariance matrix ATA of the input data A. The term coreset is usually used when S is a
weighted (scaled) subset of rows from the n rows of the input matrix. The matrix S is sometimes
called a sketch if each rows in S is a linear combination of few or all its rows, i.e. S = WA for
some matrix W ∈ Rs×n. However, those coresets and sketches usually yield (1 + ε)-multiplicative
approximations for ‖Ax‖22 by ‖Sx‖22 where the matrix S is of (d/ε)O(1) rows and x may be any
vector, or the smallest/largest singular vector of S or A; see lower bounds in Feldman u. a. (2010).

2

Moreover, a (1 + ε)-approximation to ‖Ax‖22 by ‖Sx‖22 does not guarantee an approximation to the
actual entries or eigenvectors of A by S that may be very different; see Drineas u. a. (2006).

Accurately handling big data. The algorithms in this paper return accurate coresets (ε = 0),
which is less common in the literature, including computations of the exact covariance matrix ATA.
Such coresets can easily support infinite stream of input rows using memory that is linear in their
size, and also support dynamic/distributed data in parallel. This is by the useful merge-and-reduce
property of coresets that allow them to handle big data; see details e.g. in Agarwal u. a. (2004).
Unlike traditional coresets that pay additional logarithmic multiplicative factors due to the usage
of merge-reduce trees and increasing error, the suggested weighted subsets in this paper do not
introduce additional error to the resulting compression since they preserve the result accurately.
The actual numerical errors are measured in the experimental results, with analysis that explain the
differences.

A main advantage of a coreset over a sketch is that it preserves sparsity of the input rows Feldman
u. a. (2016), which usually reduces theoretical running time. Our experiments show, as expected, that
coresets can also be used to significantly improve the numerical stability of existing algorithms, even
if the running time is the same. Another advantage is that the same coreset can be used for parameter
tuning over a large set of candidates. In addition to other reasons, this significantly reduced the
running time of such algorithms in our experiments; see Section 4.

1.2 Our contribution

A natural question that follows from the previous section is: can we maintain the optimal solution
for LMS problems both accurately and fast? We answer this question affirmably by suggesting:

(i) the first algorithm that computes the Caratheodory set of n input points in time that is lin-
ear in the input O(nd) for asymptotically large n, and using only O(log n) calls to an LMS
solver. This is by using a novel approach of coreset/skecthes fusion that is explained in the
next section; see Algorithm 2 and Theorem 2.

(ii) an algorithm that maintains a ("coreset") matrix S ∈ R(d2+1)×d such that: (a) its set of rows is
a weighted subset of the matrix A ∈ Rn×d whose rows are the input points, and (b) the covari-
ance matrices of S and A are the same, i.e., STS = ATA; see Algorithm 3 and Theorem 3.2.

(iii) example applications for boosting the performance of existing solvers by running them on the
matrix S above or its variants for Linear/Ridge/Lasso Regressions and Elastic-net.

(iv) extensive experimental results on synthetic and real-world data for common LMS solvers of
Scikit-learn library with either CPython or Intel’s distribution. Either the running time or
numerical stability is improved up to two orders of magnitude.

(v) Open code Maalouf u. a. (2019) for our algorithms that we hope will be used for the many
other LMS solvers and future research as suggested in our Conclusion section; see Section 5.

1.3 Novel approach: Coresets meet Sketches

As explained in Section 1.1, the covariance matrix ATA of A itself can be considered as a sketch
which is relatively less numerically stable to maintain (especially its inverse, as desired by e.g. linear
regression). The Caratheodory set that corresponds to the outer products of the rows ofA is a coreset
whose covariance matrix isATA and, as a weighted subset of the original rows, is more numerically
stable but takes much more time to compute; see Theorem 2.2.

We thus suggest a meta-algorithm that combines these two approaches: sketches and coresets. It
may be generalized to other, not-necessarily accurate ε-coresets and sketches (ε > 0); see Section 5.

The input to our meta-algorithm is 1) a set P of n items, 2) an integer k from 1 to n where n
is maximum accuracy but longest running time, and 3) a pair of coreset and sketch construction
schemes for the problem at hand.
The output is a coreset for the problem whose construction time is faster; see Fig. 1.

Step I: Compute a balanced partition {P1, · · · , Pk} of the input set P into k clusters of roughly the
same size. While the correctness holds for any such arbitrary partition (e.g. see Algorithm 3.1), to
reduce numerical errors – a partition that minimizes the sum of loss with respect to the problem at
hand would be optimal.

3

Figure 1: Overview of Algorithm 2 and the steps in Section 1.3. Images left to right: Steps I and II (Partition and sketch steps): A partition
of the input weighted set of n = 48 points (in blue) into k = 8 equal clusters (in circles) whose corresponding means are µ, . . . , µ8 (in
red). The mean of P (and these means) is x (in green). Step III (Coreset step): Caratheodory (sub)set of d + 1 = 3 points (bold red) with
corresponding weights (in green) is computed only for these k = 8� n means. Step IV (Recover step): the Caratheodory set is replaced by
its corresponding original points (dark blue). The remaining points in P (bright blue) are deleted. Step V (Recursive step): Previous steps are
repeated until only d+ 1 = 3 points remains. This takesO(logn) iterations for k = Θ(d).

Step II: Compute a sketch Si for each cluster Pi, where i ∈ {1, · · · , k}, using the input sketch
scheme. This step does not return a subset of P as desired, and is usually numerically less stable.

Step III: Compute a coreset B for the union S = S1 ∪ · · ·Sk of sketches from Step II, using the
input coreset scheme. Note that B is not a subset (or coreset) of P .

Step IV: Compute the union C of clusters in P1, · · · , Pk that correspond to the selected sketches in
Step III, i.e. C =

⋃
Si∈B Pi. By definition, C is a coreset for the problem at hand.

Step V: Recursively compute a coreset for C until a sufficiently coreset is obtained. This step is
used to reduce running time, without selecting k that is too small.

We then run an existing solver on the coreset C to obtain a faster accurate solution for P . Algo-
rithm 2 and 3.1 are special cases of this meta-algorithm, where the sketch is simply the sum of a
set of points/matrices, and the coreset is the existing (slow) implementation of the Caratheodory set
from Theorem 2.2.

Paper organization. In Section 2 we give our notations, definitions and the current state-of-the-
art result. Section 3 presents our main algorithms for efficient computation of the Caratheodory
(core-)set and a subset that preserves the inputs covariance matrix, their theorems of correctness
and proofs. Section 4 demonstrates the applications of those algorithms to common LMS solvers,
with extensive experimental results on both real-world and synthetic data via the Scikit-learn library
with either CPython or Intel’s Python distributions. We conclude the paper with open problems and
future work in Section 5.

2 Notation and Preliminaries

For integers n, d ≥ 1, we denote by Rn×d the set of n × d real matrices, and [n] = {1, · · · , n}.
To avoid abuse of notation, we use the big O notation where O(·) is a set Cormen u. a. (2009). A
weighted set is a pair (P, u) where P = {p1, · · · , pn} is an ordered finite set in Rd, and u : P →
[0,∞) is a positive weights function. A linear system solver is an algorithm that solves a system of
n linear equations with d variables, i.e., return x ∈ Rd such that Ax = b for a given A ∈ Rn×d and
b ∈ Rn, assuming there is such a solution.

Given a point q inside the convex hull of a set of points P , Caratheodory’s Theorem proves that there
a subset of at most d + 1 points in P whose convex hull also contains q. This geometric definition
can be formulated as follows.
Definition 2.1 (Caratheodory set). Let (P, u) be a weighted set of n points in Rd such that∑
p∈P u(p) = 1. A weighted set (S,w) is called a Caratheodory Set for (P, u) if: (i) its size is

|S| ≤ d + 1, (ii) its weighted mean is the same,
∑
p∈S w(p) · p =

∑
p∈P u(p) · p, and (iii) its sum

of weights
∑
p∈S w(p) = 1.

Caratheodory’s Theorem suggests a constructive proof for computing this set in O(n2d2)
time Carathéodory (1907); Cook und Webster (1972). This is implemented in Algorithm 1, which
takes as input a weighted set (P, u) such that

∑
p∈P u(p) = 1 and computes a Caratheodory set

(S,w) for (P, u) in O(n2d2) time. However, as observed e.g. in Nasser u. a. (2015) it can be com-

4

puted only for the first m = d + 1 points, and then be updated point by point in O(md2) = O(d3)
time per point, to obtain O(nd3) overall time. This still takes Θ(n) calls to a linear system solver
that solves Ax = b for a given matrix A and vector b, each of Θ(d) rows and columns, in O(d3)
time per call.
Theorem 2.2 (Carathéodory (1907)). A Caratheodory set (S,w) can be computed for any weighted
set (P, u) where

∑
p∈P u(p) = 1 in t(n, d) ∈ O(1) ·min

{
n2d2, nd3

}
time.

Algorithm 1 CARATHEODORY(P, u)

Input : A weighted set (P, u) of n points in Rd.
Output: A Caratheodory set (S,w) for (P, u) in O(n2d2) time.

1 if n ≤ d+ 1 then
2 return (P, u)
3 for every i ∈ {2, · · · , n} do
4 ai := pi − p1

5 A := (a2 | · · · | an) // A ∈ Rd×(n−1)

6 Compute v = (v2, · · · , vn)T 6= 0 such that Av = 0.

7 v1 := −
n∑
i=2

vi

8 α := min

{
ui
vi
| i ∈ {1, · · · , n} and vi > 0

}
9 wi := (ui − αvi) for every i ∈ {1, · · · , n} s.t. wi > 0.

10 S := {pi | wi > 0 and i ∈ {1, · · · , n}}
if |S| > d+ 1 then

11 (S,w) := CARATHEODORY(S,w)
12 return (S,w)

3 Faster Caratheodory Set

In this section, we present our main algorithm that reduces the running time for computing a
Caratheodory set from O(min

{
n2d2, nd3

}
) in Theorem 2.2 or Nasser u. a. (2015) to O(nd) for

sufficiently large n; see Theorem 3.1. A visual illustration of the corresponding Algorithm 2 is
shown in Fig 1. We also present a second algorithm, called CARATHEODORY-MATRIX, which com-
putes a small weighted subset of a the given input that has the same covariance matrix as the input
data; see Algorithm 3.
Theorem 3.1 (Caratheodory-Set Booster). Let (P,w) be a weighted set of n points in Rd, and
k ≥ d+ 2 be an integer. Let (C, u) be the output of a call to FAST-CARATHEODORY-SET(P, u, k);
See Algorithm 2. Let t(k, d) be the time it takes to compute a Caratheodory Set for k points in Rd,
as in Theorem 2.2. Then (C, u) is a Caratheodory set of (P,w) that can be computed in time

O

(
nd+ t(k, d) · log n

log(k/d)

)
.

Proof. We use the notation and variable names as defined in Algorithm 2.

Identify the input set P = {p1, · · · , pn} and the set C that is computed at Line 6 of Algorithm 2
as C =

{
c1, · · · , c|C|

}
. We will first prove that the weighted set (C,w) computed in Lines 6–8 at

the current (some) iteration is a Caratheodory set for (P, u), i.e.,
∑
p∈P u(p) · p =

∑
p∈C w(p) · p,∑

p∈P u(p) =
∑
p∈C w(p) and |C| ≤ d+ 1.

For every i ∈ {1, · · · , k}, let U(Pi) =
∑
p∈Pi

u(p).

Let (µ̃, w̃) be the pair computed at the current iteration at Line 5. By the definition of
CARATHEODORY, we have that the pair (µ̃, w̃) computed at Line 5 is a Caratheodory set of the

5

weighted set ({µ1, · · · , µk} , u′), i.e., it satisfies that

∑
µi∈µ̃

w̃(µi) = 1,
∑
µi∈µ̃

w̃(µi)µi =

k∑
i=1

U(Pi) · µi and |µ̃| ≤ d+ 1. (1)

Observe that by the definition of µi for every i ∈ {1, · · · , k} at Line 4 we have that

k∑
i=1

U(Pi) · µi =

k∑
i=1

U(Pi) ·

 1

U(Pi)
·
∑
p∈Pi

u(p) · p

 =

k∑
i=1

∑
p∈Pi

u(p)p =
∑
p∈P

u(p)p. (2)

We now have that∑
p∈C

w(p)p =
∑
µi∈µ̃

∑
p∈Pi

w̃(µi)u(p)

U(Pi)
· p =

∑
µi∈µ̃

w̃(µi)
∑
p∈Pi

u(p)

U(Pi)
p =

∑
µi∈µ̃

w̃(µi)µi

=

k∑
i=1

U(Pi) · µi =
∑
p∈P

u(p)p.

(3)

where the first equality holds by the definitions of C and w, the third equality holds by the definition
of µi at Line 4, the fourth equality is by (1), and the last equality is by (2).

We also have that the new sum of weights is equal to∑
p∈C

w(p) =
∑
µi∈µ̃

∑
p∈Pi

w̃(µi)u(p)

U(Pi)
=
∑
µi∈µ̃

w̃(µi)

U(Pi)
·
∑
p∈Pi

u(p) =
∑
µi∈µ̃

w̃(µi)

U(Pi)
·U(Pi) =

∑
µi∈µ̃

w̃(µi) = 1.

(4)

Combining (3) and (4) yields that the weighted (C,w) computed before the recursive call at
Line 10 of the algorithm is a Caratheodory set for the weighted input set (P, u). Since at
each iteration we either return such a Caratheodory set (C,w) at Line 10 or return the input
weighted set (P, u) itself at Line 1, by induction we get that the output weighted set of a call to
FAST-CARATHEODORY-SET(P, u, k) is a Caratheodory set for the original input (P, u).

By (1) we have that C contains at most |C| ≤ (d + 1) · nk = n · d+1
k points. Hence, there are at

most log k
d+1

(n) recursive calls before the stopping condition at line 1 is met. The time complexity
of each iteration is n′ + t(k, d) where n′ = |P | · d is the number of points in the current iteration.
Thus the total time complexity is

log(n)∑
i=1

nd

2i−1
+ t(k, d) ≤ 2nd+ log k

d+1
(n) · t(k, d) ∈ O

(
nd+

log n

log(k/(d+ 1))
· t(k, d)

)
.

Theorem 3.2. Let A ∈ Rn×d be a matrix, and k ≥ d2 + 2 be an integer. Let S ∈ R(d2+1)×d

be the output of a call to CARATHEODORY-MATRIX(A, k); see Algorithm 3. Let t(k, d) be the
computation time of CARATHEODORY given k point in Rd2 . Then S satisfies that ATA = STS.
Furthermore, S can be computed in O(nd2 + t(k, d2) · logn

log (k/d2))) time.

Proof. We use the notation and variable names as defined in Algorithm 3.

Since (C,w) at Line 5 of Algorithm 3 is the output of a call to FAST-CARATHEODORY-SET(P, u, k),
by Theorem 3.1 we have that: (i) the weighted means of (C,w) and (P, u) are equal, i.e.,∑

p∈P
u(p) · p =

∑
p∈C

w(p) · p, (5)

(ii) |C| ≤ d2 + 1 since P ⊆ R(d2), and (iii) C is computed in O(nd2 + log k
d2+1

(n) · t(k, d2)) time.

6

Algorithm 2 FAST-CARATHEODORY-SET(P, u, k); see Theorem 3.1

Input: A set P of n points in Rd, a (weight) function u : P → [0,∞) such that
∑
p∈P u(p) = 1,

and an integer (number of clusters) k ∈ {1, · · · , n} for the accuracy/speed trade-off.
Output: A Caratheodory set of (P, u); see Definition 2.1.

1 if n ≤ d+ 1 then
return (P, u) // n = |P | is already small

2 {P1, · · · , Pk} := a partition of P into k disjoint subsets (clusters), each contains at most n/k points.

3 for every i ∈ {1, · · · , k} do
u′(µi) :=

∑
p∈Pi

u(p) // The weight of the ith cluster.

4 µi :=
1

u′(µi)
·
∑
p∈Pi

u(p) · p // the weighted mean of Pi

5 (µ̃, w̃) := CARATHEODORY({µ1, · · · , µk} , u′) // see Algorithm 1 and Theorem 2.2.
6 C :=

⋃
µi∈µ̃

Pi

7 for every µi ∈ µ̃ and p ∈ Pi do

8 w(p) :=
w̃(µi)u(p)∑
p∈Pi

u(p)
// assign weight for each point in C

9 (C,w) := FAST-CARATHEODORY-SET(C,w, k) // recursive call
10 return (C,w)

Algorithm 3 CARATHEODORY-MATRIX(A, k); see Theorem 3.2

Input : A matrix A = (a1 | · · · | an)T ∈ Rn×d and an integer k ∈ {1, · · · , n} that denotes
accuracy/speed trade-off.

Output: A matrix S ∈ R(d2+1)×d whose union of rows is a weighted subset ofA, andATA = STS.
1 for every i ∈ {1 · · · , n} do
2 Set pi ∈ R(d2) as the concatenation of the d2 entries of aiaTi ∈ Rd×d.

// The order of entries may be arbitrary but the same for all points.
3 u(pi) := 1/n

4 P := {pi | i ∈ {1, · · · , n}} // P is a set of n vectors in R(d2).
5 (C,w) := FAST-CARATHEODORY-SET(P, u, k) // C ⊆ P and |C| = d2 +1 by Theorem 3.1
6 S := a (d2 + 1)× d matrix whose ith row is

√
n · w(pi) · aTi for every pi ∈ C.

7 return S

Combining (5) with the fact that pi is simply the concatenation of the entries of aiaTi , we get that∑
pi∈P

u(pi)aia
T
i =

∑
pi∈C

w(pi) · aiaTi . (6)

By the definition of S on Line 6, we have that

STS =
∑
pi∈C

(
√
n · w(pi) · ai)(

√
n · w(pi) · ai)T = n ·

∑
pi∈C

w(pi) · aiaTi . (7)

We also have that

ATA =

n∑
i=1

aia
T
i = n ·

∑
pi∈P

(1/n)aia
T
i = n ·

∑
pi∈P

u(pi)aia
T
i , (8)

where the second derivation holds since u ≡ 1/n.

Theorem 3.2 now holds by combining (6), (7) and (8).

4 Experimental Results

In this section we apply our fast construction of the Carathoodory Set S from previous section to
boost the running time of common LMS solvers in Table 1 by a factor of ten to hundreds, or to

7

Solver Objective function Python’s Package Example Python’s solver

Linear Regression ‖Ax− b‖22 scipy.linalg lstsq(A, b)

Ridge Regression ‖Ax− b‖22 + α ‖x‖22 sklearn.linear_model RidgeCV(A, b,A,m)

Lasso Regression
1

2n
‖Ax− b‖22 + α ‖x‖1 sklearn.linear_model LassoCV(A, b,A,m)

Elastic-Net Regression
1

2n
‖Ax− b‖22 + ρα ‖x‖22 +

(1− ρ)

2
α ‖x‖1 sklearn.linear_model ElasticNetCV(A, b,A, ρ,m)

Table 1: The four example solvers that were applied on the LMS-coreset in Algorithm 4. Each gets a matrix
A ∈ Rn×d, a vector b ∈ Rd and aims to compute x ∈ Rd that minimizes the objective function. Additional
regularization parameters include α > 0 and ρ ∈ [0, 1]. The Python’s solvers usem-fold cross validation over
every α in a given set A ⊆ [0,∞).

improve their numerical accuracy by a similar factor to support, e.g. 32 bit floating point represen-
tation. This is by running the given solver as a black box on the small matrix C that is returned
by Algorithms 5–8, which is based on S. That is, our algorithm does not compete with existing
solvers but relies on them, which is why we called it "booster". Open code for our algorithms is
provided Maalouf u. a. (2019).

From Caratheodory Matrix to LMS solvers. As stated in Theorem 3.2, Algorithm 3 gets an
input matrix A ∈ Rn×d and an integer k > d+ 1, and returns a matrix S ∈ R(d2+1)×d of the same
covariance ATA = STS, where k is a parameter for setting the desired accuracy. To "learn" a given
label vector b ∈ Rn, Algorithm 4 partitions the matrix A′ = (A | b) into m partitions, computes
using Algorithm 3 a subset for each partition that preserves its covariance matrix, and returns the
union of subsets as a pair (C, y) where C ∈ R(m(d+1)2+m)×d and y ∈ Rm(d+1)2+m. For m = 1, it
is easy to see that for every x ∈ Rd,

‖Ax− b‖ =
∥∥A′(x | −1)T

∥∥ =
∥∥S(x | −1)T

∥∥ =
∥∥(C | y)(x | −1)T

∥∥ = ‖Cx− y‖ , (9)

where the third and fourth equalities are by Theorem 3.2 and the construction of C, respectively.
This enables us to replace the original pair (A, b) by the smaller pair (C, y) for the solvers in Table 1
as in Algorithms 5–8. A scaling factor β is also needed in Algorithms 7–8.

Cross validation. To select the value of the regularization term α, the existing Python solvers we
used partition the rows of A into m folds (subsets) and run the solver m · |A| times for every fold
and α ∈ A to select the desired α; see Kohavi u. a. (1995) for details. For consistency, Algorithm 4
computes a coreset for each of these m folds in Line 4 and concatenate them in Line 5. Thus, (9)
holds similarly for m > 1.

The experiments. We evaluated the algorithms in Table 1 using the common Python’s solvers in
its right two columns. Most of these experiments were repeated twice: using the default CPython
distribution Wikipedia contributors (2019a) and Intel’s distribution LTD (2019) of Python. All the
experiments were conducted on a standard Lenovo Z70 laptop with an Intel i7-5500U CPU @
2.40GHZ and 16GB RAM. We used the 3 following real-world datasets in our experiments:

(i) 3D Road Network (North Jutland, Denmark) Data Set Kaul u. a. (2013). It contains 434874
records. We used the 2 attributes: (Web Mercaptor (Google format) longitude [real], Web
Mercaptor (Google format) latitude [real]) to predict the attribute (Height in meters [real]).

(ii) Individual household electric power consumption Data Set dataset:power (2012). It contains
2075259 records. We used the 2 attributes: (global active power [kilowatt - real], global reac-
tive power [kilowatt - real]) to predict the attribute (voltage [volt - real]).

(iii) House Sales in King County, USA dataset:sales (2015). It contains 21, 600 records. We used
the following 8 attributes: (bedrooms [integer], sqft living [integer], sqft lot [integer], floors
[integer], waterfront [boolean], sqft above [integer], sqft basement [integer], year built [inte-
ger]) to predict the (house price [integer]) attribute.

8

The synthetic data is an n×d matrix A and vector b of length n, both of random entries in [0, 1000].
As expected by the analysis, since our compression introduces no error to the computation accuracy,
the actual values of the data had no affect on the results, unlike the size of the input which affects
the computation time. Table 2 summarizes the experimental results.

4.1 Discussion

Why running time is faster? The number of rows in the reduced matrix C is O(d2), which is
usually much smaller than the original matrix A. This also explains why some coresets (dashed
red line) failed for small values of n in Fig. 2b,2c,4b and 4c. The construction of C takes O(nd2).
Solving Linear Regression takes the same time, with or without the coreset. However, the constant
are much smaller since the time for computing C becomes neglected for large values of n, as shown
in Fig. 11. We emphasize that, unlike common coresets, there is no accuracy loss due to the use
of our coreset, ignoring ±10−15 additive errors/improvements. The improvement factor in running
time due to our booster is in order of up to x10. The contribution of the coreset is much significant,
already for smaller values of n, when it boosts other solvers that use cross validation for parameter
tuning as explained above. In this case, the time complexity reduced by a factor of m · |A| since the
coreset is computed only once for each of the m folds, regardless of the size |A|. In this case, the
running time improvement is between x10–x100.
As shown in the graphs, the computations via Intel’s Python distribution reduced the running times
by 15-40%, with or without the booster, probably due to its tailored implementation for our hard-
ware.

Why numerical stability is better? A sketch that simply sums the 1-rank matrices of outer
products of rows in the input matrix A′ = (A | b) yields its covariance matrix B = A′TA′. The
Cholesky decompositionB = LTL then returns a small matrix L ∈ Rd×d that can be plugged to the
solvers, similarly to our coreset. This algorithm which we call SKETCH + CHOLESKY is so simple
and there is no hope to improve its running time via our much more involved booster. Nevertheless,
it is numerically unstable for the reasons that are explained in Section 1.1. In fact, on most of our
experiments we could not even apply this technique at all using 32-bit floating point representation.
This is because the resulting approximation to A′TA′ was not a positive definite matrix as required
by the Cholesky Decomposition, and we could not compute the matrix L at all. In case of success,
the running time of the booster was slower by at most a factor of 2 but even in these cases numerical
accuracy is improved up to orders of magnitude; See Fig. 10b–10a for histogram of errors using
such 32-bit float representation which is especially common in GPUs for saving memory, running
time and power Wikipedia contributors (2019b). For the special case of Linear regression, we can
avoid Cholesky decomposition and compute the solution (ATA)−1AT b directly after maintaining
such a sketch for ATA and AT b. However, this sketch wich we call SKETCH + INVERSE still has
large numerical issues compared to our coreset computation as shown in Fig. 10b–10a.

Algorithm 4 LMS-CORESET(A, b,m, k)

Input: A matrix A ∈ Rn×d, a vector b ∈ Rn,
and a number (integer) m of cross-validation folds,
and an integer k ∈ {1, · · · , n} that denotes accuracy/speed trade-off.

Output: A matrix C ∈ RO(md2)×d of weighted subset of rows in A, and a vector y ∈ Rd.
1 A′ := (A | b) // A matrix A′ ∈ Rn×(d+1)

2 {A′1, · · · , A′m} := split the matrix A′ into m block matrices, each of size (nm)× (d+ 1)
3 for every i ∈ {1, · · · ,m} do
4 Si := CARATHEODORY-MATRIX(A′i, k) // see Algorithm 3
5 S := (ST1 | · · · |STm)T // concatenation of the m matrices into a single matrix of

m(d+ 1)2 +m rows and d+ 1 columns

6 C := the first d columns of S.

7 y := the last column of S.

99 return (C, y)

9

Figure Algorithm’s
number x/y Axes labels Python

Distribution Dataset Input Parameter

2 6–8 Size/Time for various d CPython Synthetic m = 3, |A| = 100
3 6–8 Size/Time for various |A| CPython Synthetic m = 3, d = 7
4 6–8 Size/Time for various d Intel’s Synthetic m = 3, |A| = 100
5 6–8 Size/Time for various |A| Intel’s Synthetic m = 3, d = 7
6 6–8 |A|/Time CPython Datasets (i)–(ii) m = 3, |A| = 100
7 6–8 |A|/Time Intel’s Datasets (i)–(ii) m = 3, |A| = 100
8 6–8 Time/maximal |A| than is feasible CPython Datasets (i)–(ii) m = 3
9 6–8 Time/maximal |A| than is feasible Intel’s Datasets (i)–(ii) m = 3

10 5 Error/Count Histogram + Size/Error CPython Datasets (i),(iii) m = 1
11 5 Size/Time for various Distributions CPython, Intel’s Synthetic m = 64, d = 15

Table 2: Experiments. Our booster was applied on the common CPython Wikipedia contributors (2019a) and
Intel’s LTD (2019) distributions (implementations). The input matrix is A ∈ Rn×d with label vector b ∈ Rn,
where n is "Data size". Cross validation uses m folds for evaluating each regularization term in A. Number
of clusters is chosen as k = 2(d + 1)2 + 2 in order to have O(logn) iterations in Algorithm 2, and ρ = 0.5
for Algorithm 8. Computation time includes the computation of the reduced input (C, y); See Section 3. The
histogram graphs consist of bins that count the number of occurrences of a range of errors.

(a) (b) (c)

Figure 2: Time comparison on synthetic data using CPython distribution.

(a) (b) (c)

Figure 3: Time comparison on synthetic data using CPython distribution.

Algorithm 5 LINREG-BOOST(A, b,m, k)

1 (C, y) := LMS-CORESET(A, b,m, k)
2 x∗ := lstsq(C, y)
3 return x∗

Algorithm 6 RIDGECV-BOOST(A, b,A,m, k)

1 (C, y) := LMS-CORESET(A, b,m, k)
2 (x, α) := RidgeCV(C, y,A,m)
3 return (x, α)

Algorithm 7 LASSOCV-BOOST(A, b,A,m, k)

1 (C, y) := LMS-CORESET(A, b,m, k)

2 β :=
√(

m ·
(
d+ 1)2 +m

)
/n

3 (x, α) := LassoCV(β · C, β · y,A,m)
4 return (x, α)

Algorithm 8 ELASTICCV-BOOST(A, b,m,A, ρ, k)

1 (C, y) := LMS-CORESET(A, b,m, k)

2 β :=
√(

m ·
(
d+ 1)2 +m

)
/n

3 (x, α) := ElasticNetCV(β · C, β · y,A, ρ,m)
4 return (x, α)

10

(a) (b) (c)

Figure 4: Time comparison on synthetic data using Intel’s python distribution.

(a) (b) (c)

Figure 5: Time comparison on synthetic data using Intel’s python distribution.

(a) Dataset (i). (b) Dataset (ii).

Figure 6: Time comparison on real world data using CPython distribution.

(a) Dataset (i). (b) Dataset (ii).

Figure 7: Time comparison on real world data using Intel’s python distribution.

11

(a) Dataset (i). (b) Dataset (ii).

Figure 8: Number of alphas |A| that can be tested in a predefined amount of time using CPython distribution.

(a) Dataset (i). (b) Dataset (ii).

Figure 9: Number of alphas |A| that can be tested in a predefined amount of time using Intel’s Python distribu-
tion.

(a) Dataset (i). (b) Dataset (iii).

Figure 10: Accuracy comparison using real word data. x∗ = lstsq(A, b). x was computed using the methods
specified in the legend; see Section 4.1.

Figure 11: Time comparison using synthetic data.

12

5 Conclusion and Future Work

We presented a novel framework that combines sketches and coresets. As an example application,
we proved that the set from the Caratheodory Theorem can be computed in O(nd) overall time for
sufficiently large n (for a set of n points in Rd). This is instead of O(n2d2) time as in the original
theorem. We then generalized the result for a matrix S whose rows are a weighted subset of the
input matrix and their covariance matrix is the same. Our experimental results section shows how
to significantly boost the numerical stability or running time of existing LMS solvers by applying
them on S. Future work includes: (a) applications of our framework to combine other sketch-coreset
pairs e.g. as listed in Phillips (2016), (b) Experiments for streaming/distributed/GPU data and other
potential applications such as for Deep Learning e.g. as part of the Stochastic Gradient Descent that
uses the LMS adaptive filter Widrow u. a. (1977); Mandic (2004), and (c) experiments with higher
dimensional data: we may compute each of theO(d2) entries in the covariance matrix by calling our
algorithm with d = 2 and the corresponding pair of columns in the d columns of the input matrix.

References
[dataset:power 2012] : Individual household electric power consumption Data Set

. https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+
power+consumption. 2012

[dataset:sales 2015] : House Sales in King County, USA. https://www.kaggle.com/
harlfoxem/housesalesprediction. 2015

[Afrabandpey u. a. 2016] AFRABANDPEY, Homayun ; PELTOLA, Tomi ; KASKI, Samuel: Re-
gression Analysis in Small-n-Large-p Using Interactive Prior Elicitation of Pairwise Similarities.
In: FILM 2016, NIPS Workshop on Future of Interactive Learning Machines, 2016

[Agarwal u. a. 2004] AGARWAL, Pankaj K. ; HAR-PELED, Sariel ; VARADARAJAN, Kasturi R.:
Approximating extent measures of points. In: Journal of the ACM (JACM) 51 (2004), Nr. 4,
S. 606–635

[Bauckhage 2015] BAUCKHAGE, Christian: NumPy/SciPy Recipes for Data Science: Ordinary
Least Squares Optimization. In: researchgate. net, Mar (2015)

[Bjorck 1967] BJORCK, Ake: Solving linear least squares problems by Gram-Schmidt orthogo-
nalization. In: BIT Numerical Mathematics 7 (1967), Nr. 1, S. 1–21

[Carathéodory 1907] CARATHÉODORY, Constantin: Über den Variabilitätsbereich der Koef-
fizienten von Potenzreihen, die gegebene Werte nicht annehmen. In: Mathematische Annalen 64
(1907), Nr. 1, S. 95–115

[Clarkson und Woodruff 2009] CLARKSON, Kenneth L. ; WOODRUFF, David P.: Numerical
linear algebra in the streaming model. In: Proceedings of the forty-first annual ACM symposium
on Theory of computing ACM (Veranst.), 2009, S. 205–214

[Cook und Webster 1972] COOK, WD ; WEBSTER, RJ: Caratheodory’s theorem. In: Canadian
Mathematical Bulletin 15 (1972), Nr. 2, S. 293–293

[Copas 1983] COPAS, John B.: Regression, prediction and shrinkage. In: Journal of the Royal
Statistical Society: Series B (Methodological) 45 (1983), Nr. 3, S. 311–335

[Cormen u. a. 2009] CORMEN, Thomas H. ; LEISERSON, Charles E. ; RIVEST, Ronald L. ; STEIN,
Clifford: Introduction to algorithms. MIT press, 2009

[Drineas u. a. 2006] DRINEAS, Petros ; MAHONEY, Michael W. ; MUTHUKRISHNAN, Shan:
Sampling algorithms for l 2 regression and applications. In: Proceedings of the seventeenth
annual ACM-SIAM symposium on Discrete algorithm Society for Industrial and Applied Mathe-
matics (Veranst.), 2006, S. 1127–1136

13

https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
https://www.kaggle.com/harlfoxem/housesalesprediction
https://www.kaggle.com/harlfoxem/housesalesprediction

[Feldman u. a. 2010] FELDMAN, Dan ; MONEMIZADEH, Morteza ; SOHLER, Christian ;
WOODRUFF, David P.: Coresets and sketches for high dimensional subspace approximation prob-
lems. In: Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms
Society for Industrial and Applied Mathematics (Veranst.), 2010, S. 630–649

[Feldman u. a. 2016] FELDMAN, Dan ; VOLKOV, Mikhail ; RUS, Daniela: Dimensionality Reduc-
tion of Massive Sparse Datasets Using Coresets. In: Advances in neural information processing
systems (NIPS), 2016

[Gallagher u. a. 2017] GALLAGHER, Neil ; ULRICH, Kyle R. ; TALBOT, Austin ; DZIRASA,
Kafui ; CARIN, Lawrence ; CARLSON, David E.: Cross-spectral factor analysis. In: Advances in
Neural Information Processing Systems, 2017, S. 6842–6852

[Golub und Reinsch 1971] GOLUB, Gene H. ; REINSCH, Christian: Singular value decomposition
and least squares solutions. In: Linear Algebra. Springer, 1971, S. 134–151

[Golub und Van Loan 2012] GOLUB, Gene H. ; VAN LOAN, Charles F.: Matrix computations.
Bd. 3. JHU press, 2012

[Hoerl und Kennard 1970] HOERL, Arthur E. ; KENNARD, Robert W.: Ridge regression: Biased
estimation for nonorthogonal problems. In: Technometrics 12 (1970), Nr. 1, S. 55–67

[Jolliffe 2011] JOLLIFFE, Ian: Principal component analysis. Springer, 2011

[Kang u. a. 2011] KANG, Byung ; LIM, Woosang ; JUNG, Kyomin: Scalable kernel K-means via
centroid approximation. In: Proc. NIPS, 2011

[Kaul u. a. 2013] KAUL, Manohar ; YANG, Bin ; JENSEN, Christian S.: Building accurate 3d
spatial networks to enable next generation intelligent transportation systems. In: 2013 IEEE 14th
International Conference on Mobile Data Management Bd. 1 IEEE (Veranst.), 2013, S. 137–146

[Kohavi u. a. 1995] KOHAVI, Ron u. a.: A study of cross-validation and bootstrap for accuracy
estimation and model selection. In: Ijcai Bd. 14 Montreal, Canada (Veranst.), 1995, S. 1137–1145

[Laparra u. a. 2015] LAPARRA, Valero ; MALO, Jesús ; CAMPS-VALLS, Gustau: Dimensionality
reduction via regression in hyperspectral imagery. In: IEEE Journal of Selected Topics in Signal
Processing 9 (2015), Nr. 6, S. 1026–1036

[Liang u. a. 2013] LIANG, Yingyu ; BALCAN, Maria-Florina ; KANCHANAPALLY, Vandana:
Distributed PCA and k-means clustering. In: The Big Learning Workshop at NIPS Bd. 2013
Citeseer (Veranst.), 2013

[LTD 2019] LTD, Intel: Accelerate Python* Performance. https://software.intel.com/
en-us/distribution-for-python. 2019

[Maalouf u. a. 2019] MAALOUF, Alaa ; JUBRAN, Ibrahim ; FELDMAN, Dan: Open code for the
algorithms in this paper. 2019. – Open code will be provided upon the publication of this paper.

[Mandic 2004] MANDIC, Danilo P.: A generalized normalized gradient descent algorithm. In:
IEEE signal processing letters 11 (2004), Nr. 2, S. 115–118

[Nasser u. a. 2015] NASSER, Soliman ; JUBRAN, Ibrahim ; FELDMAN, Dan: Coresets for Kine-
matic Data: From Theorems to Real-Time Systems. In: arXiv preprint arXiv:1511.09120 (2015)

[Pearson 1900] PEARSON, Karl: X. On the criterion that a given system of deviations from the
probable in the case of a correlated system of variables is such that it can be reasonably supposed
to have arisen from random sampling. In: The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science 50 (1900), Nr. 302, S. 157–175

[Peng u. a. 2015] PENG, Xi ; YI, Zhang ; TANG, Huajin: Robust subspace clustering via thresh-
olding ridge regression. In: Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015

[Phillips 2016] PHILLIPS, Jeff M.: Coresets and sketches. In: arXiv preprint arXiv:1601.00617
(2016)

14

https://software.intel.com/en-us/distribution-for-python
https://software.intel.com/en-us/distribution-for-python

[Porco u. a. 2015] PORCO, Aldo ; KALTENBRUNNER, Andreas ; GÓMEZ, Vicenç: Low-rank
approximations for predicting voting behaviour. In: Workshop on Networks in the Social and
Information Sciences, NIPS, 2015

[Safavian und Landgrebe 1991] SAFAVIAN, S R. ; LANDGREBE, David: A survey of decision
tree classifier methodology. In: IEEE transactions on systems, man, and cybernetics 21 (1991),
Nr. 3, S. 660–674

[Seber und Lee 2012] SEBER, George A. ; LEE, Alan J.: Linear regression analysis. Bd. 329.
John Wiley & Sons, 2012

[Tibshirani 1996] TIBSHIRANI, Robert: Regression shrinkage and selection via the lasso. In:
Journal of the Royal Statistical Society: Series B (Methodological) 58 (1996), Nr. 1, S. 267–288

[Widrow u. a. 1977] WIDROW, Bernard ; MCCOOL, John ; LARIMORE, Michael G. ; JOHNSON,
C R.: Stationary and nonstationary learning characteristics of the LMS adaptive filter. In: Aspects
of Signal Processing. Springer, 1977, S. 355–393

[Wikipedia contributors 2019a] WIKIPEDIA CONTRIBUTORS: CPython — Wikipedia, The
Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=CPython&oldid=
896388498. 2019

[Wikipedia contributors 2019b] WIKIPEDIA CONTRIBUTORS: List of Nvidia graphics process-
ing units — Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?
title=List_of_Nvidia_graphics_processing_units&oldid=897973746. 2019

[Zhang und Rohe 2018] ZHANG, Yilin ; ROHE, Karl: Understanding Regularized Spectral Clus-
tering via Graph Conductance. In: Advances in Neural Information Processing Systems, 2018,
S. 10631–10640

[Zou und Hastie 2005] ZOU, Hui ; HASTIE, Trevor: Regularization and variable selection via
the elastic net. In: Journal of the royal statistical society: series B (statistical methodology) 67
(2005), Nr. 2, S. 301–320

15

https://en.wikipedia.org/w/index.php?title=CPython&oldid=896388498
https://en.wikipedia.org/w/index.php?title=CPython&oldid=896388498
https://en.wikipedia.org/w/index.php?title=List_of_Nvidia_graphics_processing_units&oldid=897973746
https://en.wikipedia.org/w/index.php?title=List_of_Nvidia_graphics_processing_units&oldid=897973746

	1 Introduction and Motivation
	1.1 Related work
	1.2 Our contribution
	1.3 Novel approach: Coresets meet Sketches

	2 Notation and Preliminaries
	3 Faster Caratheodory Set
	4 Experimental Results
	4.1 Discussion

	5 Conclusion and Future Work

