
PIDForest: Anomaly Detection and Certification via
Partial Identification

Anonymous Author(s)
Affiliation
Address
email

Abstract

We consider the problem of detecting anomalies in a large dataset. We propose a1

definition that captures the intuition that anomalies are easy to distinguish from2

the overwhelming majority of points by relatively few attribute values: we call this3

partial identification. Formalizing this intuition, we propose a geometric anomaly4

measure for a point that we call PIDScore, which measures for the minimum5

density of data points over all subcubes containing the point. We present PIDForest:6

a random forest based algorithm that finds anomalies based on this definition. We7

show that it performs favorably in comparison to several popular anomaly detection8

methods, across a broad range of benchmarks. PIDForest also provides a succinct9

explanation for why a point is labelled anomalous, by providing a set of features10

and ranges for them which are relatively uncommon in the dataset.11

1 Introduction12

An anomaly in a dataset is a point that does not conform to what is normal or expected. Anomaly13

detection is a ubiquitous machine learning task with diverse applications including network mon-14

itoring, medicine and finance [1, Section 3]. There is an extensive body of research devoted to it,15

see [1, 2] and the references therein. Our work is primarily motivated by the emergence of large16

distributed systems, like the modern data center which produce massive amounts of heterogenous17

data. Operators need to constantly monitor this data, and use it to identify and troubleshoot problems.18

The volumes of data involved are so large that a lot of the analysis has to be automated. Effective19

anomaly detection algorithms can help humans prioritize attention and hone in on important events.20

Here we highlight some of the challenges that an anomaly detection algorithm must face.21

1. High dimensional, heterogeneous data: The data collected could contains measurements of22

metrics like cpu usage, memory, bandwidth, temperature, in addition to categorical data such as23

day of the week, geographic location, OS type. This makes finding an accurate generative model24

for the data challenging. The metrics might be captured in different units, hence algorithms that25

are unit-agnostic are preferable. The algorithm needs to scale to high dimensional data.26

2. Scarce labels: Most of the data are unlabeled. Generating labels is time and effort intensive and27

requires domain knowledge. Hence supervised methods are a non-starter, and even tuning too28

many hyper-parameters of unsupervised algorithms could be challenging.29

3. Irrelevant attributes: Often an anomaly manifests itself in a relatively small number of attributes30

among the large number being monitored. For instance, a single machine in a large datacenter31

might be compromised and behave abnormally.32

4. Interpretability of results: When we alert a datacenter administrator to a potential anomaly, it33

helps to point to a few metrics that might have triggered it, to help in troubleshooting.34

In the generative model setting, anomalies come with a simple explanation: a model that fits the35

data, under which the anomalous observation is unlikely. Interpretability is more challenging for36

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.

algorithms that do not assume a generative model. In this work, we are particularly interested in37

random forest based methods for anomaly detection, namely the influential work on Isolation Forests38

[3] (we refer to this algorithm as iForest) and subsequent work [4, 5]. iForest is a remarkably simple39

and efficient algorithm, that has been found to outperform other anomaly detection methods in several40

domains [6]. Yet, there is no crisp definition of ground truth for what constitutes an anomaly: the41

anomaly score is more or less defined as the output of the algorithm. We believe that a necessary42

step for interpretability is a clear articulation of what is an anomaly, separate from the algorithmic43

question of how it is found.44

Our contributions. We summarize the main contributions of this work:45

1. In Section 2, we motivate and propose a new anomaly measure that we call PIDScore. Our46

definition corresponds to an intuitive notion of what is an anomaly and has a natural geometric47

interpretation. It can be viewed as a natural generalization of the well studied notion of teaching48

dimension [7, 8].49

2. Our definition sheds light on the types of points likely to be labeled as anomalies by the iForest50

algorithm, and also on the types of points it might miss. We build on this intuition to design51

an efficient random forest based algorithm—PIDForest, which finds anomalies according to52

PIDScore, in Section 3.53

3. We present extensive experiments on real and synthetic data sets showing that our algorithm54

consistently outperforms or matches six popular anomaly detection algorithms. PIDForest is the55

top performing algorithm in 6 out of 12 benchmark real-world datasets, while no other algorithm56

is the best in more than 3. PIDForest is also resilient to noise and irrelevant attributes. These57

results are in Section 4 and 5.58

We begin by describing our proposed anomaly measure, PIDScore at a high level. Let the sparsity of59

a dataset T in a subcube of the attribute space be the volume of the subcube divided by the number60

of points from T that it contains. For a dataset T and a point x, PIDScore(x, T) measures the61

maximum sparsity of T in all subcubes C containing x. A point x is labelled anomalous if it belongs62

to a region of the attribute space where data points are sparse. While notions of density have been63

used in previous works on clustering and anomaly detection, our approach differs from prior work in64

important ways.65

1. Dealing with heterogenous attributes: Dealing with subcubes and volumes allows us to handle66

heterogenous data where some columns are real, some are categorical and possibly unordered.67

All we need is to specify two things for each coordinate: what constitutes an interval, and how68

length is measured. Subcubes and volumes are then defined as products over coordinates. This is69

in sharp contrast to methods that assume a metric space. Notions like `1/`2 distance add different70

coordinates and might not be natural in heterogenous settings.71

2. Scale invariance: For a subcube, we only care about the ratio of its volume to the volume of the72

entire attribute space. Hence we are not sensitive to the units of measurement.73

3. Considering subcubes at all scales: In previous works, density is computed using balls of a74

fixed radius, this radius is typically a hyperparameter. This makes the algorithm susceptible to75

masking, since there may be a dense cluster of points, all of which are anomalous. We take the76

minimum over subcubes at all scales.77

Given this definition, one could aim for an algorithm that preprocesses T , then takes a point x and78

computes PIDScore(x, T). Such an algorithm is likely to suffer from the curse of dimensionality79

like in Nearest Neighbor based methods, and not scale to high volumes of data. Instead we adopt the80

approach of iForest [3] which focuses on what is anomalous, rather than the entire dataset. We call81

the resulting algorithm PIDForest. Like in iForest, PIDForest builds a collection of decision trees that82

partition space into subcubes. In PIDForest, the choice of the splits at each node favors partitions83

of greatly varying sparsity, the variance in the sparsity is explicitly the quantity we optimize when84

choosing a split. In contrast, previous work either choose splits randomly [3] or based on the range85

[4]. Choosing coordinates that have greater variance in their marginal distribution lets us hone in on86

the important coordinates, and makes our algorithm robust to irrelevant/noisy attributes, which are87

unlikely to be chosen. Secondly, we label each leaf by its sparsity rather than depth in the tree. The88

score of a point is the maximum sparsity over all leaves reached in the forest.89

We present a detailed comparison between PIDForest and iForest in Section 3 and a detailed discussion90

of related work in Appendix B.91

2

2 Partial Identification and PIDScore92

A motivating example: Anomalous Animals. Imagine a tabular data set that contains a row for93

every animal on the planet. Each row then contains attribute information about the animal such as the94

species, color, weight, age and so forth. The rows are ordered. Say that Alice wishes to identify a95

particular animal in the table unambiguously to Bob, using the fewest number of bits.96

If the animal happens to be a white elephant, then Alice is in luck. Just specifying the attributes97

species and color narrows the list of candidates down to about fifty (as per Wikipedia). At this point,98

specifying one more attribute like weight or age will probably pin the animal down uniquely. Or she99

can just specify its order in the list.100

If the animal in question happens to be a white rabbit, then it might be far harder to uniquely identify,101

since there are tens of millions of white rabbits, unless that animal happens to have some other102

distinguishing features. Since weight and age are numeric rather than categorical attributes, if one103

could measure them to arbitrary precision, one might be able to uniquely identify each specimen.104

However, the higher the precision, the more bits Alice needs to communicate to specify the animal.105

We will postulate a formal definition of anomaly score, drawing on the following intuitions:106

1. Anomalies have short descriptions. The more exotic/anomalous the animal Alice has in mind,107

the more it stands out from the crowd and the easier it is for her to convey it to Bob. Constraining108

just a few carefully chosen attributes sets anomalies apart from the vast majority of the population.109

2. Precision matters in real values. For real-valued attributes, it makes sense to specify a range in110

which the value lies. For anomalous points, this range might not need to be very narrow, but for111

normal points, we might need more precision.112

3. Isolation may be overkill. The selected attributes need not suffice for complete isolation. Partial113

identification aka narrowing the space down to a small list can be a good indicator of an anomaly.114

First some notation: let T denote a dataset of n points in d dimensions. Given indices S ⊆ [d] and115

x ∈ Rd, let xS denote the projection of x onto coordinates in S. Logarithms are to base 2. As a116

warm-up, we consider the Boolean setting where the set of points is T ⊆ {0, 1}d.117

2.1 The Boolean setting118

First assume that T has no duplicates. We define idLength(x, T) to be the minimum number of119

co-ordinates that must be revealed to uniquely identify x among all points in T . Since there are no120

duplicates, revealing all coordinates suffices, so idLength(x, T) ≤ d,121

Definition 1. (IDs for a point) We say that S ⊆ [d] is an ID for x ∈ T if xS 6= yS for all y ∈ T \{x}.122

Let ID(x, T) be the smallest ID for x breaking ties arbitrarily. Let idLength(x, T) = |ID(x, T)|.123

While on first thought idLength is an appealing measure of anomaly, it does not deal with duplicates,124

and further, the requirement of unique identification is fairly stringent. Even in simple settings points125

might not have short IDs. For example, if H is the Hamming ball consisting of 0d and all d unit126

vectors, then idLength(0d,H) = d, since we need to reveal all the coordinates to separate 0d from127

every unit vector. One can construct examples where even the average value of idLength(x, T) over128

all points can be surprisingly high [8].129

We relax the definition to allow for partial identification. Given x ∈ T and S ⊆ [d], the set of130

impostors of x in T are all points that equal x on all coordinates in S. Formally Imp(x, T , S) =131

{y ∈ T s.t. xS = yS}. We penalize sets that do not identify x uniquely by the logarithm of the132

number of impostors. The intuition is that this penalty measures how many bits it costs Alice to133

specify x from the list of impostors.134

Definition 2. (Partial ID) We define135

PID(x, T) = arg min
S⊆[d]

(|S|+ log2(|Imp(x, T , S)|)), (1)

pidLength(x, T) = min
S⊆[d]

(|S|+ log2(|Imp(x, T , S)|)). (2)

It follows from the definition that pidLength(x, T) ≤ min(log2(n), idLength(x, T)). The first136

inequality follows by taking S to be empty so that every point in T is an impostor, the second by137

3

taking S = ID(x, T) so that the only impostor is x itself. Returning to the Hamming ball example, it138

follows that pidLength(0d, T) = log2(d+ 1) where we take the empty set as the PID.139

We present an alternate geometric view of pidLength, which generalizes naturally to other settings.140

A subcube C of {0, 1}d is the set of points obtained by fixing some subset S ⊆ [d] coordinates141

to values in 0, 1. The sparsity of T in a subcube C is ρ0,1(T , C) = |C|/|C ∩ T |. The notation142

C 3 x means that C contains x, hence minC3x is the minimum over all C that contain x. One can143

show that for x ∈ T , maxC3x ρ0,1(T , C) = 2d−pidLength(x,T), see appendix C for a proof. This144

characterization motivates using 2−pidLength(x,T) as an anomaly score: anomalies are points that lie145

in relatively sparse subcubes. Low scores come with a natural witness: a sparse subcube PID(x, T)146

containing relatively few points from T .147

2.2 The continuous setting148

Now assume that all the coordinates are real-valued, and bounded. Without loss of generality, we149

may assume that they lie in the range [0, 1], hence T is a collection of n points from [0, 1]d. An150

interval I = [a, b], 0 ≤ a ≤ b ≤ 1 is of length len(I) = b− a. A subcube C is specified by a subset151

of co-ordinates S and intervals Ij for each j ∈ S. It consists of all points such that xj ∈ Ij for all152

j ∈ S. To simplify our notation, we let C be I1 × I2 · · · × Id where Ij = [0, 1] for j 6∈ S. Note that153

vol(C) = Πj len(Ij). Define the sparsity of T in C as ρ(T , C) = vol(C)/|C ∩T |. PIDScore(x, T)154

is the maximum sparsity over all subcubes of [0, 1]d containing x.155

Definition 3. For x ∈ T , let156

PID(x, T) = arg max
C3x

ρ(T , C), PIDScore(x, T) = max
C3x

ρ(T , C).

To see the analogy to the Boolean case, define pidLength(x, T) = − log(PIDScore(x, T)). Fix157

C = PID(x, T). Since vol(C) =
∏

j∈[d] len(Ij), we can write158

pidLength(x, T) = log(|C ∩ T |/vol(C)) =
∑
j∈[d]

log(1/len(Ij)) + log(|C ∩ T |). (3)

This exposes the similarities to Equation (2): C ∩ T is exactly the set of impostors for x, whereas159 ∑
j∈[d] log(1/len(Ij)) is the analog of |S|. In the boolean setting, we pay 1 for each coordinate from160

S, here the cost ranges in [0,∞) depending on the length of the interval. In the continuous setting,161

the j 6∈ S iff Ij = [0, 1] hence log(1/len(Ij)) = 0, hence we pay nothing for coordinates outside S.162

Restricting to an interval of length p costs log(1/p). If p = 1/2, we pay 1, which is analogous to the163

Boolean case where we pay 1 to cut the domain in half. This addresses the issue of having to pay164

more for higher precision. Note also that the definition is scale-invariant as multiplying a coordinate165

by a constant changes the volume of all subcubes by the same factor.166

Other attributes: To handle attributes over a domain D, we need to specify what subsets of167

D are intervals and how we measure their length. For discrete attributes, it in natural to define168

len(I) = |I|/|D|. When the domain is ordered intervals are naturally defined, for instance months169

between April and September is an interval of length 1/2. We could also allow wraparound in intervals,170

say months between November and March. For unordered discrete values, the right definition of171

interval could be singleton sets, like country = Brazil or certain subsets, like continent= the Americas.172

The right choice will depend on the dataset. Our definition is flexible enough to handle this: We can173

make independent choices for each coordinate, subcubes and volumes are then defined as products,174

and PIDScore can be defined using definition 3.175

3 The PIDForest algorithm176

We do not how to compute PIDScore exactly, or even a provable approximation of it in a way that177

scales well with both d and n. The PIDForest algorithm described below is heuristic designed to178

approximate PIDScore. Like with iForest, the PIDForest algorithm builds an ensemble of decision179

trees, each tree is built using a sample of the data set and partitions the space into subcubes. However,180

the way the trees are constructed and the criteria by which a point is declared anomalous are very181

different. Each node of a tree corresponds to a subcube C, the children of C represent a disjoint182

partition of C along some axis i ∈ [d] (iForest always splits C into two , here we allow for a finer183

4

partition). The goal is to have large variance in the sparsity of the subcubes. Recall that the sparsity184

of a subcube C with respect to a data set T is ρ(C, T) = vol(C)/|C ∩ T |. Ultimately, the leaves185

with large ρ values will point to the regions with the anomalies.186

For each tree, we pick a random sample P ⊆ T of points, and use that subset to build the tree. Each187

node v in the tree corresponds to subcube C(v), and a set of points P (v) = C(v) ∩ P . For the root,188

C(v) = [0, 1]d and P (v) = P . At each internal node, we pick a coordinate j ∈ [d], and breakpoints189

t1 ≤ · · · ≤ tk−1 which partition Ij into k intervals, and split C into k subcubes. The number of190

partitions k is a hyper-parameter (taking k < 5 works well in practice). We then partition the points191

P (v) into these subcube. The partitions stop when the tree reached some specified maximum depth or192

when |P (v)| ≤ 1. The key algorithmic problem is how to choose the coordinate j and the breakpoints193

by which it should be partitioned. Intuitively we want to partition the cube into some sparse regions194

and some dense regions. This intuition is formalized next.195

Let Ij ⊆ [0, 1] be the projection of C onto coordinate i. Say the breakpoints are chosen so that we196

partition Ij into I1j , . . . , Ikj . This partitions C into C1, . . . , Ck where the intervals corresponding197

to the other coordinates stay the same. We first observe that in any partition C, the sparsity of the198

subcubes weighted by the number of points is the same. Let len(Iij)/len(I) = vol(Ci)/vol(C) = pi199

and let |P ∩ Ci|/|P | = qi. Hence200

ρ(Ci) = vol(Ci)/|P ∩ Ci| = (pivol(I))/(qi|P |) = (piρ(C))/qi.

Since a qi fraction of points in P have sparsity ρ(Ci), the expected sparsity for a randomly chosen201

point from P is202 ∑
j

qjρ(Cj) =
∑
j

pjρ(C) = ρ(C).

In words, in any partition of C if we pick a point randomly from P (v) and measure the sparsity of203

its subcube, on expectation we get ρ(C). Recall that our goal is to split C into sparse and dense204

subcubes. Hence a natural objective is to maximize the variance in the sparsity:205

Var(P, k) =
∑
j

qj(ρ(Cj)− ρ(C))2 =
∑
j

qjρ(Cj)
2 − ρ(C)2. (4)

In Appendix A, we show that this problem can be reduced to the problem of finding a k-histogram for206

a discrete function f : [n]→ R, which minimizes the squared `2 error. This is a well-studied problem207

[9, 10, 11] and there an efficient one-pass streaming algorithm for computing near-optimal histograms208

due to Guha et al. [12]. We use this algorithm to compute the best split along each coordinate, and209

then choose the coordinate that offers the most variance reduction. This is the fundamental difference210

between PIDForest and iForest and its variants. PIDForest zooms on the coordinates with signal - on211

the coordinates where a split is most beneficial. We continue splitting until a certain predefined depth212

is reached, (or points are isolated). Each leaf is labeled with the sparsity of its subcube.213

PIDForest Fit
Params: Num of trees t, Samples m, Max degree k, Max depth h.
Repeat t times:

Create root node v.
Let C(v) = [0, 1]d, P (v) ⊆ T be a random subset of size m .
Split(v)

Split(v):
For i ∈ [d], compute the best split into k intervals.
Pick i that maximizes variance, split C along i into {Ci}ki=1.
For i ∈ [k] create child vi s.t. C(vi) = Ci, P (vi) = P (v) ∩ Ci.
If depth(vi) ≤ h and |P (vi)| > 1 then Split(vi).
Else, set PIDScore(vi) = vol(C(vi))/|P (vi)|.

214

Producing an anomaly score for each point is fairly straightforward. Say we want to compute a score215

for y ∈ [0, 1]d. Each tree in the forest maps y to a leaf node v and gives it a score PIDScore(v). We216

take the 75% percentile score as our final score. (Any robust analog of the max will do).217

5

Finding the optimal split for a node takes time O(dm log(m)). This is repeated at most kh times for218

each tree (typically much fewer since the trees we build tend to be unbalanced), and t times to create219

the forest. We typically choose m ≤ 200, k ≤ 5, h ≤ 10 and t ≤ 50.220

Comparison to Isolation Forests: iForest repeatedly samples a set S of m points from T and221

builds a random tree with those points as leaves. The tree is built by choosing a random co-ordinate222

xi, and a random value in its range about which to split. The intuition is that anomalous points will223

be easy to separate from the rest, and will be isolated at small depth. What kind of points are likely to224

be labeled anomalous by iForest?225

In one direction, if a point is isolated at relatively low depth k in a tree, then it probably belongs in226

a sparse subcube. Indeed, a node at depth k corresponds to a subcube C of expected volume 2−k,227

which is large for small k. The fact that the sample contains no points from C suggests that C is228

fairly sparse in it (this can be made precise using a VC-dimension argument).229

Being in a sparse subcube is necessary but not sufficient. This is because iForest chooses which230

coordinate we split on as well as the breakpoint at random. Thus to be isolated at small depth231

frequently, a point needs to lie in an abundant number of low-density subspaces: picking splits at232

random should have a good chance of defining such a subspace. Requiring such an abundance of233

sparse subcubes can be problematic. Going back to the animals example, isolating white elephants is234

hard unless both Color and Type are used as attributes, as there is no shortage of elephants or white235

animals. Moreover, which attributes are relevant can depend on the point: weight might be irrelevant236

in isolating a white elephant, but it might be crucial to isolating a particularly large elephant. This237

causes iForest to perform poorly in the presence of irrelevant attributes, see for instance [5].238

PIDForest circumvents this by explicitly seeking dimensions and splits that have large variance in239

sparsity. Attributes with little signal are unlikely to be chosen for splitting. For concrete examples, see240

Section 5. The tradeoff is that we incur a slightly higher cost at training time, the cost of prediction241

stays pretty much the same.242

4 Real-world Datasets243

We show that PIDForest performs favorably in comparison to several popular anomaly detection244

algorithms on real-world benchmarks. We select datasets from varying domains, and with different245

number of datapoints, percentage of anomalies and dimensionality. The code and data for all246

experiments is included in the supplementary.247

Dataset Descriptions: The first set of datasets are classification datasets from the UCI [13] and248

openML repository [14]. Three of the datsets—Thyroid, Mammography and Siesmic—are naturally249

suited to anomaly detection as they are binary classification tasks where one of the classes has a250

much smaller occurrence rate (around 5%) and hence can be treated as anomalous. Thyroid and251

Mammography have real-valued attributes whereas Siesmic has categorical attributes as well. Three252

other datasets—Satimage-2, Musk and Vowels—are classification datasets with multiple classes, and253

we combine the classes and divide them into inliers and outliers as in [15]. Two of the datasets—http254

and smtp—are derived from the KDD Cup 1999 network intrusion detection task and we preprocess255

them as in [16]. These two datasets have have significantly more datapoints (about 500k and 100k256

respectively) and a smaller percentage of outliers (less than 0.5%).257

The next set of real-world datasets—NYC taxicab, CPU utilization, Machine temperature (M.T.) and258

Ambient temperature (A.T.)—are time series datasets from the Numenta anomaly detection benchmark259

[17]. These are time series datasets which have been hand-labeled with anomalies rooted in real-world260

causes. The length of the time series is between 10k-20k, with about 10% of the timepoints marked261

as anomalous. We use the standard technique of shingling with a sliding window of width 10, hence262

each data point becomes a 10 dimensional vector holding 10 consecutive measurements from the263

time series. Detailed parameters of our datasets can be found in Table 2 in the Appendix.264

Methodology: We compare PIDForestwith six popular anomaly detection algorithms: Isolation265

Forest (iForest), Robust Random Cut Forest (RRCF), one-class SVM (SVM), Local Outlier Factor266

(LOF), k-Nearest Neighbour (kNN) and Principal Component Analysis (PCA). We implement267

PIDForest in Python, it takes about 500 lines of code. For iForest, SVM and LOF we used the268

scikit-learn implementations, for kNN and PCA we used the implementations on PyOD [18] , and269

for RRCF we use the implementation from [19]. Except for RRCF, we run each algorithm with270

the default hyperparameter setting as varying the hyperparameters from their default values did not271

6

Data set PIDForest iForest RRCF LOF SVM kNN PCA
Thyroid 0.876 ± 0.013 0.819 ± 0.013 0.739± 0.004 0.737 0.547 0.751 0.673

Mammo. 0.840 ± 0.010 0.862 ± 0.008 0.830 ± 0.002 0.720 0.872 0.839 0.886
Siesmic 0.733 ± 0.006 0.698 ± 0.004 0.701 ± 0.004 0.553 0.601 0.740 0.682

Satimage 0.987 ± 0.001 0.994 ± 0.001 0.991 ± 0.002 0.540 0.421 0.936 0.977

Vowels 0.741 ± 0.008 0.736 ± 0.026 0.813± 0.007 0.943 0.778 0.975 0.606

Musk 1.000 ± 0.000 0.998 ± 0.003 0.998 ± 0.000 0.416 0.573 0.373 1.000
http 0.986 ± 0.004 1.000 ± 0.000 0.993 ± 0.000 0.353 0.994 0.231 0.996

smtp 0.923 ± 0.003 0.908 ± 0.003 0.886 ± 0.017 0.905 0.841 0.895 0.823

NYC 0.564 ± 0.004 0.550 ± 0.005 0.543 ± 0.004 0.671 0.500 0.697 0.511

A.T. 0.810 ± 0.005 0.780 ± 0.006 0.695 ±0.004 0.563 0.670 0.634 0.792

CPU 0.935 ± 0.003 0.917 ± 0.002 0.785 ± 0.002 0.560 0.794 0.724 0.858

M.T. 0.813 ± 0.006 0.828 ± 0.002 0.7524 ± 0.003 0.501 0.796 0.759 0.834

Table 1: Results on real-world datasets. We bold the algorithm(s) which get the best AUC.

change the results significantly. For RRCF, we use 500 trees instead of the default 100 since it yielded272

significantly better performance. For PIDForest, we fix the hyperparameters of depth to 10, number273

of trees to 50, and the number of samples used to build each tree to 100. We use the area under the274

ROC curve (AUC) as the performance metric. As iForest, PIDForest and RRCF are randomized, we275

repeat these algorithms for 5 runs and report the mean and standard deviation. SVM, LOF, kNN and276

PCA are deterministic, hence we report a single AUC number for them.277

Results: We report the results in Table 1. PIDForest is the top performing or jointly top performing278

algorithm in 6 out of the 12 datasets, and iForest, kNN and PCA are top performing or jointly top279

performing algorithms in 3 datasets each. Detailed ROC performance curves of the algorithms are280

given in Fig. 3 and 4. While the running time of our fit procedure is slower than iForest, it is281

comparable to RRCF and faster than many other methods. The time for predict is similar to iForest,282

and faster than RRCF. Even our vanilla python implementation only takes about 5 minutes to fit a283

model to our largest dataset which has half a million points.284

Recall from Section 3 that PIDForest differs from iForest in two ways, it optimizes for the axis to285

split on, and secondly, it uses sparsity instead of depth as the anomaly measure. To further examine286

the factors which contribute to the favorable performance of PIDForest, we do an ablation study287

through two additional experiments.288

Choice of split: Optimizing for the choice of split rather than choosing one at random seems289

valuable in the presence of irrelevant dimensions. To measure this effect, we added 50 additional290

random dimensions sampled uniformly in the range [0, 1] to two low-dimensional datasets from Table291

1—Mammography and Thyroid (both datasets are 6 dimensional). In the Mammography dataset,292

PIDForest (and many other algorithms as well) suffers only a small 2% drop in performance, whereas293

the performance of iForest drops by 15%. In the Thyroid dataset, the performance of all algorithms294

drops appreciably. However, PIDForest has a 13% drop in performance, compared to a 20% drop for295

iForest. The detailed results are given in Table 3 in the Appendix.296

Using sparsity instead of depth: In this experiment, we test the hypothesis that the sparsity of the297

leaf is a better anomaly score than depth for the PIDForest algorithm. The performance of PIDForest298

deteriorates noticeably with depth as the score, the AUC for Thyroid drops to 0.847 from 0.876,299

while the AUC for Mammography drops to 0.783 from 0.840.300

5 Synthetic Data301

We compare PIDForest with popular anomaly detection algorithms on synthetic benchmarks. The302

first set of experiments checks how the algorithms handle duplicates in the data. The second set of303

uses data from a mixture of Gaussians, and highlights the importance of the choice of coordinates to304

7

100 300 500 700 900
num of samples

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

Effects of masking

Isolation Forest
PIDForest

(a) 970 points are drawn from {−1, 1}10 and 30
are all zeros vector. The y−axis measures the frac-
tion of the 30 reported in the top 5% of anomalies.

0 2 4 6 8 10 12 14 16 18
noise dimension

0

20

40

60

80

100

ac
cu

ra
cy

Mixture of Gaussians with added Noise
PIDForest
Isolation Forest
EM
LOF

(b) y−axis measures how many of the 100 true
anomalies were reported by the algorithm in the
top 100 anomalies.

Figure 1: Synthetic experiments on masked anomalies and Gaussian data.

split in PIDForest. The third set of experiments tests the ability of the algorithm to detect anomalies305

in time-series (see Appendix D). In all these experiments, PIDForest outperforms prior art.306

Masking and sample size: It is often the case that anomalies repeat multiple times in the data. This307

phenomena is called masking and is a challenge for many algorithms. iForest counts on sampling to308

counter masking: not too many repetitions occur in the sample. But the performance is sensitive to309

the sampling rate, see [4, 5]. To demonstrate it, we create a data set of 1000 points in 10 dimensions.310

970 of these points are sampled randomly in {−1, 1}10 (hence most of these points are unique). The311

remaining 30 are the all-zeros vector, these constitute a masked anomaly. We test if the zero points are312

declared as anomalies by PIDForest and iForestunder varying sample sizes. The results are reported313

in Fig. 1a. Whereas PIDForest consistently reported these points as anomalies, the performance314

of iForest heavily depends on the sample size. When it is small, then masking is negated and the315

anomalies are caught, however the points become hard to isolate when the sample size increases.316

Mixtures of Gaussians and random noise: We use a generative model where the ground truth317

anomalies are the points of least likelihood. The first two coordinates of the 1000 data points are318

sampled by taking a mixture of two 2−dimensional Gaussians with different means and covariances319

(the eigenvalues are {1, 2}, the eigenvectors are chosen at random). The remaining d dimensions are320

sampled uniformly in the range [−2, 2]. We run experiments varying d from 0 to 19. In each case we321

take the 100 points smallest likelihood points as the ground truth anomalies. For each algorithm we322

examine the 100 most anomalous points and calculate how many of these belong to the ground truth.323

We compare PIDForest with Isolation Forest, Local Outlier Factor (LOF) and with an algorithm that324

uses EM to fit the data to a mixture of Gaussians. The results are reported in Fig. 1b. Note that even325

without noise (d = 0) PIDForest is the best generic algorithm. As the number of noisy dimensions326

increase PIDForest focuses on the dimensions with signal, so it performs better. Some observations:327

1. The performance of iForest degrades rapidly with d, once d ≥ 6 it effectively outputs a random328

set. Noticeably, PIDForest performs better than iForest even when d = 0. This is mainly due to329

the points between the two centers being classified as normal by iForest. PIDForest classifies330

them correctly as anomalous even though they are assigned to leaves that are deep in the tree.331

2. The EM algorithm is specifically designed to fit the data to a mixture of two Gaussians, so it does332

best for small or zero noise. As d increases the data distribution is further away from a mixture.333

PIDForest matches or improves once d > 2.334

3. Local Outlier Factor’s reasonable performance depends crucially on the fact that the noise is of335

the same scale as the Gaussians. If we change the scale of the noise (which could happen if the336

measuring unit changes), then the performance of LOF drops significantly even for d = 1.337

Conclusions. We believe that PIDForest is arguably the best off-the-shelf algorithm for anomaly338

detection on a large, heterogenous dataset. It inherits many of the desirable features of Isolation339

Forests, while also improving on it in important ways. Developing provable and scalable approxima-340

tions to PIDScore is an interesting algorithmic challenge.341

8

References342

[1] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. ACM343

Comput. Surv., 41(3):15:1–15:58, 2009.344

[2] Charu C. Aggarwal. Outlier Analysis. Springer Publishing Company, Incorporated, 2nd edition,345

2013. ISBN 9783319475783.346

[3] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In Proceedings of the 8th347

IEEE International Conference on Data Mining (ICDM 2008), December 15-19, 2008, Pisa,348

Italy, pages 413–422, 2008.349

[4] Sudipto Guha, Nina Mishra, Gourav Roy, and Okke Schrijvers. Robust random cut forest based350

anomaly detection on streams. In Proceedings of the 33nd International Conference on Machine351

Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, pages 2712–2721, 2016.352

[5] Tharindu R. Bandaragoda, Kai Ming Ting, David W. Albrecht, Fei Tony Liu, Ye Zhu, and353

Jonathan R. Wells. Isolation-based anomaly detection using nearest-neighbor ensembles.354

Computational Intelligence, 34(4):968–998, 2018.355

[6] Andrew F Emmott, Shubhomoy Das, Thomas Dietterich, Alan Fern, and Weng-Keen Wong.356

Systematic construction of anomaly detection benchmarks from real data. In Proceedings of the357

ACM SIGKDD workshop on outlier detection and description, pages 16–21. ACM, 2013.358

[7] S.A. Goldman and M.J. Kearns. On the complexity of teaching. J. Comput. Syst. Sci., 50359

(1):20–31, February 1995. ISSN 0022-0000. doi: 10.1006/jcss.1995.1003. URL http:360

//dx.doi.org/10.1006/jcss.1995.1003.361

[8] Eyal Kushilevitz, Nathan Linial, Yuri Rabinovich, and Michael E. Saks. Witness sets for families362

of binary vectors. J. Comb. Theory, Ser. A, 73(2):376–380, 1996. doi: 10.1006/jcta.1996.0031.363

URL https://doi.org/10.1006/jcta.1996.0031.364

[9] Nick Koudas, S Muthukrishnan, and Divesh Srivastava. Optimal histograms for hierarchical365

range queries. In PODS, pages 196–204, 2000.366

[10] Anna C Gilbert, Sudipto Guha, Piotr Indyk, Yannis Kotidis, S. Muthukrishnan, and Martin J367

Strauss. Fast, small-space algorithms for approximate histogram maintenance. In Proceedings368

of the thiry-fourth annual ACM symposium on Theory of computing, pages 389–398. ACM,369

2002.370

[11] Sudipto Guha, Piotr Indyk, S Muthukrishnan, and Martin J Strauss. Histogramming data371

streams with fast per-item processing. In International Colloquium on Automata, Languages,372

and Programming, pages 681–692. Springer, 2002.373

[12] Sudipto Guha, Nick Koudas, and Kyuseok Shim. Approximation and streaming algorithms374

for histogram construction problems. ACM Trans. Database Syst., 31(1):396–438, March375

2006. ISSN 0362-5915. doi: 10.1145/1132863.1132873. URL http://doi.acm.org/376

10.1145/1132863.1132873.377

[13] Arthur Asuncion and David Newman. Uci machine learning repository, 2007.378

[14] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml: Networked379

science in machine learning. SIGKDD Explorations, 15(2):49–60, 2013. doi: 10.1145/2641190.380

2641198. URL http://doi.acm.org/10.1145/2641190.2641198.381

[15] Charu C Aggarwal and Saket Sathe. Theoretical foundations and algorithms for outlier ensem-382

bles. ACM Sigkdd Explorations Newsletter, 17(1):24–47, 2015.383

[16] Kenji Yamanishi, Jun-Ichi Takeuchi, Graham Williams, and Peter Milne. On-line unsupervised384

outlier detection using finite mixtures with discounting learning algorithms. Data Mining and385

Knowledge Discovery, 8(3):275–300, 2004.386

[17] Subutai Ahmad, Alexander Lavin, Scott Purdy, and Zuha Agha. Unsupervised real-time anomaly387

detection for streaming data. Neurocomputing, 262:134–147, 2017.388

9

http://dx.doi.org/10.1006/jcss.1995.1003
http://dx.doi.org/10.1006/jcss.1995.1003
http://dx.doi.org/10.1006/jcss.1995.1003
https://doi.org/10.1006/jcta.1996.0031
http://doi.acm.org/10.1145/1132863.1132873
http://doi.acm.org/10.1145/1132863.1132873
http://doi.acm.org/10.1145/1132863.1132873
http://doi.acm.org/10.1145/2641190.2641198

[18] Yue Zhao, Zain Nasrullah, and Zheng Li. Pyod: A python toolbox for scalable outlier detection.389

arXiv preprint arXiv:1901.01588, 2019.390

[19] Tharindu R. Bandaragoda, Kai Ming Ting, David W. Albrecht, Fei Tony Liu, Ye Zhu, and391

Jonathan R. Wells. rrcf: Implementation of the robust random cut forest algorithm for anomaly392

detection on streams. Journal of Open Source Software, 4(35):1336, 2019.393

[20] Victoria J. Hodge and Jim Austin. A survey of outlier detection methodologies. Artif. Intell.394

Rev., 22(2):85–126, 2004.395

[21] Animesh Patcha and Jung-Min Jerry Park. An overview of anomaly detection techniques:396

Existing solutions and latest technological trends. Computer Networks, 51:3448–3470, 2007.397

[22] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. Lof: Iden-398

tifying density-based local outliers. In Proceedings of the 2000 ACM SIGMOD Interna-399

tional Conference on Management of Data, SIGMOD ’00, pages 93–104, New York, NY,400

USA, 2000. ACM. ISBN 1-58113-217-4. doi: 10.1145/342009.335388. URL http:401

//doi.acm.org/10.1145/342009.335388.402

[23] Fabrizio Angiulli and Clara Pizzuti. Fast outlier detection in high dimensional spaces. In403

Proceedings of the 6th European Conference on Principles of Data Mining and Knowledge404

Discovery, PKDD ’02, pages 15–26, London, UK, UK, 2002. Springer-Verlag. ISBN 3-540-405

44037-2. URL http://dl.acm.org/citation.cfm?id=645806.670167.406

[24] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. Efficient algorithms for mining407

outliers from large data sets. SIGMOD Rec., 29(2):427–438, May 2000. ISSN 0163-5808. doi:408

10.1145/335191.335437. URL http://doi.acm.org/10.1145/335191.335437.409

[25] Tao Shi and Steve Horvath. Unsupervised learning with random forest predictors. Journal of410

Computational and Graphical Statistics, 15(1):118–138, 2006.411

[26] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm412

for discovering clusters a density-based algorithm for discovering clusters in large spatial413

databases with noise. In Proceedings of the Second International Conference on Knowledge414

Discovery and Data Mining, KDD’96, pages 226–231. AAAI Press, 1996. URL http:415

//dl.acm.org/citation.cfm?id=3001460.3001507.416

[27] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar Raghavan. Automatic417

subspace clustering of high dimensional data for data mining applications. SIGMOD Rec.,418

27(2):94–105, June 1998. ISSN 0163-5808. doi: 10.1145/276305.276314. URL http:419

//doi.acm.org/10.1145/276305.276314.420

[28] Balas K. Natarajan. Machine learning: A theoretical approach. Morgan Kaufmann Publishers,421

Inc., 1991.422

[29] Martin Anthony, Graham Brightwell, Dave Cohen, and John Shawe-Taylor. On exact specifica-423

tion by examples. In Proceedings of the Fifth Annual Workshop on Computational Learning The-424

ory, COLT ’92, pages 311–318, New York, NY, USA, 1992. ACM. ISBN 0-89791-497-X. doi:425

10.1145/130385.130420. URL http://doi.acm.org/10.1145/130385.130420.426

[30] Avi Wigderson and Amir Yehudayoff. Population recovery and partial identification. Mach.427

Learn., 102(1):29–56, January 2016. ISSN 0885-6125. doi: 10.1007/s10994-015-5489-9. URL428

http://dx.doi.org/10.1007/s10994-015-5489-9.429

A Finding optimal splits efficiently430

In this section we present the algorithm used to split a single dimension. The problem is easy in the431

discrete setting, so we focus on the continuous case. We first restate the problem we which solve.432

For interval I , a k-interval partition of I is a partition into a set {I1, . . . , Ik} of disjoint intervals.433

10

http://doi.acm.org/10.1145/342009.335388
http://doi.acm.org/10.1145/342009.335388
http://doi.acm.org/10.1145/342009.335388
http://dl.acm.org/citation.cfm?id=645806.670167
http://doi.acm.org/10.1145/335191.335437
http://dl.acm.org/citation.cfm?id=3001460.3001507
http://dl.acm.org/citation.cfm?id=3001460.3001507
http://dl.acm.org/citation.cfm?id=3001460.3001507
http://doi.acm.org/10.1145/276305.276314
http://doi.acm.org/10.1145/276305.276314
http://doi.acm.org/10.1145/276305.276314
http://doi.acm.org/10.1145/130385.130420
http://dx.doi.org/10.1007/s10994-015-5489-9

Optimal k-split: Given a set P of m points x1 ≤ · · · ≤ xm from an interval I , and a parameter k,434

find a k-interval partition of I where Ii contains mi points from P so as to maximize435

cost(P, k) =

k∑
i=1

miρ(Ii)
2 (5)

where ρ(Ei) = len(Ei)/mi. Comparing this to Equation (4), we have436

cost(P, k) = mVar(P, k) +mρ(C)2.

The second term does not depend on the partition, so we can drop it without changing the optimum.437

By shifting and scaling, we will assume that the bounding interval I = [0, 1]. We also assume the xis438

are distinct (this is not needed, but eases notation). To simplify matters, we restrict to those intervals439

whose start and end points are either e0 = 0, em = 1, or ei = (xi + xi+1)/2 for i ∈ [m− 1]. This440

avoids issues that might arise from the precision of the end points, and from having points lie on441

the boundary of two intervals (to which interval should they belong?). It reduces the search space442

of intervals to O(m2). One can use dynamic programming to give an O(m2k) time and O(mk)443

space algorithm to solve the problem exactly. However this is too costly, since the procedure runs in444

an inner loop of PIDForest Fit. Rather we show the problem reduces to that of computing optimal445

k-histograms for an array, for which there are efficient streaming approximation algorithms known.446

First some notation. An interval in [m] is J = {i : ` ≤ i ≤ u}. Given a function f : [m] → R447

and an interval J ⊆ [m], let f̄(J) =
∑

i∈J f(i)/|J | denote the average of f over the interval J . A448

k-interval partition of [m] is a set of pairwise disjoint intervals {J1, . . . , Jk} whose union is [m].449

Given j ∈ [m], let J(j) ∈ I denote the interval containing it.450

Optimal k-histograms: Given f : [m]→ R, find a k-interval partition of [m] which maximizes451

cost(f, k) =
∑
i∈[k]

|Ji|(f̄(Ji))
2. (6)

Consider the k-histogram h where we approximate f by its average over each interval Ji. Maximizing452

cost(f, k) is equivalent to minimizing the squared error of the histogram since453 ∑
j∈m

(f̄(I(j))− f(j))2 =
∑
j∈[m]

f(j)2 −
∑
i∈[k]

|Ji|(f̄(Ji))
2,

hence the name.454

We now give the reduction from computing k-splits to k-histograms. For each i ∈ [m], let f(i) =455

ei − ei−1 denote the length of the interval [ei−1, ei] which contains xi. There is now a natural456

correspondence between the discrete interval J`,u = {`, · · · , u} and the continuous interval I`,u =457

[e`−1, eu] which contains the points {x`, · · · , xu} from P , where458

f̄(J`,u) =

∑u
i=`(ei − ei−1)

u− `+ 1
=
eu − e`−1
u− `+ 1

= ρ(I`,u)

Thus a k interval partition of [m] translates to a k-interval partition of I , with objective function459

cost(f, k) =
∑
i∈[k]

|Ji|(f̄(Ji))
2 =

∑
i∈[k]

|P ∩ Ii|ρ(Ii)
2 = cost(P, k).

An efficient streaming algorithm for computing approximately optimal k-histograms is given by460

Guha et al. [12], which requires space O(m+ k2) and time O(m+ k3) (we set their parameter ε to461

0.1). We use their algorithm in Fit procedure to find good splits.462

B Relation to prior work463

Anomaly detection is a wide area with a number of surveys and books [1] [20] [21]. In the following464

we discuss the basic techniques and how they relate to our work.465

11

Proximity based methods: Many works detect anomalies by computing distances to nearest neigh-466

bors in various methods [22][5] [23],[24], [25]. There are many different methods with pros and cons,467

which we do not discuss here. The important common feature is that these algorithms utilize a notion468

of distance, typically Euclidean, as a proxy for similarly across points. Once the notion of distance is469

established it is used find the closest neighbor, or the close k neighbors, it is used to define a ball470

of a given radius around a point and so on. There are few major drawbacks with these approaches.471

First, as the number of dimensions increases the distances between points become more and more472

similar, and notion of a local neighborhood looses its meaning. But more importantly, while in some473

contexts distance is naturally defined and then a crisp notion of an anomaly could be obtained, we474

claim that distance is an ill suited notion to the general case where some columns are categorical and475

some numeric and where we different columns employ different units.476

Density based algorithms: Density has been used as a criterion for several works on clustering. For477

instance, DBSCAN [26] builds clusters from maximal connected components out of dense balls (in a478

chosen metric) of a certain radius. Outliers are points that do not belong in any such cluster. The479

work of Agrawal et al. [27] builds clusters that can be expressed as connected unions of subcubes. A480

key difference from these works is that we do not attempt to discover the structure (such as clusters)481

in the normal data. Further, rather than only consider balls/subcubes at a particular scale (this scale is482

a hyperparameter), our algorithms attempt to minimize density over subcubes at all scales.483

Isolation Forest: Perhaps the most relevant algorithm is the widely used Isolation Forest [3] and484

its important to understand the two fundamental differences between the algorithms. The first is485

that [3] chooses randomly which column to split. We choose columns that could be split well. This486

randomness causes Isolation Forest’s accuracy to degrade when extra dimensions are introduced, (this487

is a well known issue, see [4], [5]). Robust Isolation Forest [4] deals with this by choosing a column488

based on the size of its range. This makes the algorithm scale-sensitive and results change based on489

the units with which the data is reported. PIDForest on the other hand zooms on the columns which490

have the most signal, and thus can overcome uniform noise. The other difference is that Isolation491

Forest insists on full isolation and then computes the average leaf depth. This means it is sensitive to492

duplicates or near duplicates. See Section 5 where we demonstrate these points via experiments.493

IDs and PIDs: The notion of IDs for a point is natural and has been studied in the computational494

learning literature under various names: the teaching dimension of a hypothesis class [7], discriminant495

[28], specifying set [29] and witness set [8]. The terminology of IDs is from Wigderson and496

Yehudayoff [30], so is the notion of partial identification and impostors. Our definition of pidLength497

and its application to anomaly detection is new. [30] consider PIDs, but with a different goal in mind498

(to minimize the depth of a certain graph constructed using the PID relation).499

C Proofs500

Lemma 4. For x ∈ T ,501

max
C3x

ρ0,1(T , C) = 2d−pidLength(x,T).

Proof: Given S ⊆ [d], let502

Cx(S) = {y ∈ {0, 1}d s.t. yS = xS}

be the subcube consisting of 2d−|S| points that agree with x on S. Since Cx(S)∩T = Imp(x, T , S),503

ρ0,1(T , Cx(S)) =
|Cx(S)|/|Cx(S) ∩ T |

|T |
=

2d−|S|

|Imp(x, T , S)|
= 2d−(|S|+log2(|Imp(x,T ,S)|))

Iterating over all subsets S gives all the subcubes that contain x. The RHS is minimized by taking504

S = PID(x, T) by Definition 2. This gives the desired result.505

D Experiments on Synthetic Time Series Data506

Time Series: We create a periodic time series using a simple sin function with a period of 40.507

We choose 10 locations and fix the value for the next 20 points following each of these locations.508

12

1.0

0.5

0.0

0.5

1.0

(a) An example of a time series, the red dots repre-
sent the beginning of an anomalous segment.

0.00 0.02 0.04 0.06
FPR

0.6

0.7

0.8

0.9

TP
R

Time Series - RoC

Isolation Forest
PIDForest

(b) Performance comparison on time series data.

Figure 2: Synthetic experiments on time series data.

Data set n d #outliers (%)
Thyroid 7200 6 534 (7.42%)

Mammography (Mammo.) 11183 6 250 (2.32%)

Siesmic 2584 15 170 (6.5%)

Satimage-2 5803 36 71 (1.2%)

Vowels 1456 12 50 (3.4%)

Musk 3062 166 97 (3.2%)

http 567479 3 2211 (0.4%)

smtp 95156 3 30 (0.03%)

NYC taxicab 10321 10 1035 (10%)

Ambient Temperature (A.T.) 7267 10 726 (10%)

CPU utilization 18050 10 1499 (8.3%)

Machine temperature (M.T.) 22695 10 2268 (10%)

Table 2: Details of real-world datasets. The first 8 datasets are derived from classification tasks, and
the last 4 are from time series with known anomalies.

These regions are the anomalies. Finally we add small Gaussian noise to the series. See Fig. 2a for509

an example. As in Section 4, we shingle the time series with a window of 10. Fig. 2b shows the510

ROC curve (true positive rate (TPR) vs. false positive rate (FPR)), averaged over 10 runs. Since all511

dimensions are a priori identical, choosing splits at random seems natural. So we expect iForest to512

perform well, and indeed it achieves a precision of almost 1 while catching 5 out of the 10 anomalies.513

But iForest however struggles to catch all anomalies, and PIDForest has a significantly better precision514

for high recall.515

Data set PIDForest iForest RRCF LOF SVM kNN PCA
Thyroid∗ 0.751 ± 0.035 0.641 ± 0.023 0.530 ± 0.005 0.492 0.494 0.495 0.614

Mammography∗ 0.829 ± 0.016 0.722 ± 0.016 0.797 ± 0.013 0.628 0.872 0.817 0.768

Table 3: For the first two datasets in Table 1 we add 50 noisy dimensions to examine the performance
of algorithms in the presence of irrelevant attributes. We bold the algorithm(s) which get the best
AUC, up to statistical error.

13

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

ROC curve

PIDForest
iForest
RRCF
kNN
PCA

(a) ROC curve for Thyroid dataset.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

ROC curve

PIDForest
iForest
RRCF
kNN
PCA

(b) ROC curve for Mammography dataset.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

ROC curve

PIDForest
iForest
RRCF
kNN
PCA

(c) ROC curve for Siesmic dataset.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

ROC curve

PIDForest
iForest
RRCF
kNN
PCA

(d) ROC curve for Satimage-2 dataset.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

ROC curve

PIDForest
iForest
RRCF
kNN
PCA

(e) ROC curve for Vowels dataset.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

ROC curve

PIDForest
iForest
RRCF
kNN
PCA

(f) ROC curve for Musk dataset.

Figure 3: ROC curves for the first six datasets from Table 1. For visual clarity, we omit LOF and
SVM which did not perform as well as the other algorithms.

14

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

ROC curve

PIDForest
iForest
RRCF
kNN
PCA

(a) ROC curve for http dataset.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

ROC curve

PIDForest
iForest
RRCF
kNN
PCA

(b) ROC curve for smtp dataset.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

ROC curve

PIDForest
iForest
RRCF
kNN
PCA

(c) ROC curve for NYC taxi dataset.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

ROC curve

PIDForest
iForest
RRCF
kNN
PCA

(d) ROC curve for Ambient temperature dataset.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

ROC curve

PIDForest
iForest
RRCF
kNN
PCA

(e) ROC curve for CPU utilization dataset.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

ROC curve

PIDForest
iForest
RRCF
kNN
PCA

(f) ROC curve for Machine temperature dataset.

Figure 4: ROC curves for the last six datasets from Table 1. For visual clarity, we omit LOF and
SVM which did not perform as well as the other algorithms.

15

	Introduction
	Partial Identification and PIDScore
	The Boolean setting
	The continuous setting

	The PIDForest algorithm
	Real-world Datasets
	Synthetic Data
	Finding optimal splits efficiently
	Relation to prior work
	Proofs
	Experiments on Synthetic Time Series Data

